[en] The microstructures of 800 H samples affected by natural corrosion within industrial-like environmental conditions have been studied, and their potential effects on the creep response have been investigated based on literature information. Smooth cylindrical specimens of the alloy extracted from rolled sheet material have been placed into an industrial furnace, where they were exposed to high temperature thermal cycles within an air atmosphere. Samples spending 0 to 5 years inside the furnace underwent a microstructural characterisation campaign. Optical microscopy images reveal no grain coarsening. Macroscopic Vickers hardness shows a relatively wide surface hardness range (115≲HV10≲140). Compared to as-received material, micro-hardness profiles from specimens after years of high-temperature exposure exhibit a surface hardening trend within the vicinity of the edge exposed to the environment. Scanning electron microscopy analyses revealed two coexisting corrosion mechanisms: oxidation and nitridation. The latter is identified as the cause of the micro-indentation hardening trend.
Disciplines :
Materials science & engineering
Author, co-author :
Rojas Ulloa, Carlos Eduardo ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Morch, H.; ArGEnCo Department, MS2F Sector, MSM Team, University of Liège, Liège, Belgium
Tuninetti, V.; Department of Mechanical Engineering, Universidad de La Frontera, Temuco, Chile
Di Giovanni, A.; Drever International S.A., Liège, Belgium
Mertens, Anne ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Duchene, Laurent ; Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F ; Fonds de la Recherche Scientifique −F.R.S.−F.N.R.S. Belgium, Bruxelles, Belgium
Language :
English
Title :
Microstructure evolution of Incoloy 800H in industrial environment and correlation with creep mechanisms from literature
ANID - Agencia Nacional de Investigación y Desarrollo FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture WBI - Wallonie-Bruxelles International
Carlos Rojas-Ulloa acknowledges the FNRS for funding this research throughout the FRIA grant N° 4000-8987 and FRIA grant N° 4002-1907. The authors acknowledge the funding from the bilateral research cooperation agreement WBI - Wallonie-Bruxelles/AGCID-Chile 2023-2025 RI-02 (DIE23-0001). As research director of F.R.S.-FNRS, A.M. Habraken thanks the Fund for Scientific Research for financial support.
Commentary :
This peer-reviewed article was submitted with motive of the 6th European Creep Collaborative Committee conference (Edinburgh, UK).
Spindler M., ECCC data sheet Steel. 1998; X8NiCrAlTi 32-21 (1.4959, Alloy 800H), 95–97.
Hammond JP, Ratcliff LT, Brinkman CR, et al. Dynamic and static measurements of elastic constants with data on 2 1/4 Cr-1 Mo steel, types 304 and 316 stainless steels, and alloy 800H. Oak Ridge, Tennessee, U.S: Oak Ridge Laboratory; 1979.
Abd El-Azim ME., Correlation between tensile and creep data in alloy 800H at 850°C. J Nucl Mater. 1996;231(1–2):146–150. doi: 10.1016/0022-3115(96)00352-2
Wilson DJ, Freeman JW, Clarence SA. Creep-rupture properties of sandvik sanicro 31 tubing. Michigan, U.S: The University of Michigan, Ann Arbor; 1968.
Booker MK. An analytical representation of the creep and creep-rupture behavior of alloy 800H. Oak Ridge, Tennessee, U.S: Oak Ridge Laboratory; 1978.
Booker MK, Sikka VK. A study of tertiary creep instability in several elevated-temperature structural materials. Oak Ridge, Tennessee, U.S: Oak Ridge Laboratory; 1978.
Penkalla H-J, Nickel H, Schubert F. Multiaxial creep of tubes from incoloy 800 H and inconel 617 under static and cyclic loading conditions. Nucl Eng Des. 1989;112:279–289. doi: 10.1016/0029-5493(89)90163-5
Mu Z, Bothe K, Gerold V. Damage mechanisms in alloy 800H under creep-fatigue conditions. Fat Frac Eng Mat Struct. 1994;17(5):523–537. doi: 10.1111/j.1460-2695.1994.tb00252.x
Soo P, Sabatini RL, Epel LG, et al. Hare, high cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment. 1980; doi: 10.2172/5043389.
Page RA, Hack JE, Brown RD. Behavior of Fe-Ni-Cr alloys in a complex multioxidant environment under conditions of dynamic straining. MTA. 1984;15(1):11–22. doi: 10.1007/BF02644382
Swindeman RW, Swindeman MJ, Ren W. Can coverage of alloy 800h in asme section III subsection NH be extended to 850°C? In: Volume 6: materials and Fabrication. ASMEDC, Vancouver, BC, Canada: 2006 pp. 521–528. doi: 10.1115/PVP2006-ICPVT-11-93333
[12] Swindeman RW, Swindeman MJ, Roberts BW, et al. Verification of Allowable Stresses in ASME Section III Subsection NH for Alloy 800 H, Part 2: Creep. LLC, New York: ASME Standards Technology; 2008. STP-NU-020.
Ren W, Swindeman R. Status of alloy 800 H in considerations for the Gen IV nuclear energy systems. J Pressure Vessel Technol. 2014;136:054001. doi: 10.1115/1.4025093
Kolluri M, ten Pierick P, Bakker T. Characterization of high temperature tensile and creep–fatigue properties of alloy 800H for intermediate heat exchanger components of (V)HTRs. Nucl Eng Des. 2015;284:38–49. doi: 10.1016/j.nucengdes.2014.12.017
Gardiner B, High temperature creep performance of alloy 800H, PhD. thesis, University of Canterbury, 2014.
Monteiro SN. High-temperature failure by perforation of incoloy 800h pigtails in reformer furnaces. In: Esaklul KA, editor. Handbook of case histories in failure analysis, ASM International; 1992. p. 0. doi: 10.31399/asm.fach.v01.c9001108
Dehmolaei R, Shamanian M, Kermanpur A. Microstructural changes and mechanical properties of Incoloy 800 after 15 years service. Mater Charact. 2009;60:246–250. doi: 10.1016/j.matchar.2008.08.012
Spyrou LA, Sarafoglou PI, Aravas N, et al. Evaluation of creep damage of lc 800HT pigtails in a refinery steam reformer unit. Eng Fail Anal. 2014;45:456–469. doi: 10.1016/j.engfailanal.2014.07.017
Guttmann V, Bürgel R. Creep–structural relationship in steel Alloy 800H at 900–1000°C. Metal Sci. 1983;17:549–555. doi: 10.1179/030634583790420475
Tachibana K, Nishi H, Eto M, et al. Creep characteristics of Alloy 800H. Japan; 1998. http://inis.iaea.org/search/search.aspx?orig_q=RN:29043501
Degischer HP, Aigner H, Lahodny H, Spiradek K. Qualification of stationary creep of the carbide precipitating alloy 800H. In: High temperature alloys. Dordrecht: Springer; 1987. pp. 487–498.
Spiradek K, Degischer HP, Lahodny H. Correlation between microstructure and the creep behaviour at high temperature of alloy 800 H. In: Materials science, international atomic energy agency (IAEA). Vienna, Austria: Specialists meeting on high-temperature metallic materials for gas-cooled reactors. 1989. pp. 54–65. https://inis.iaea.org/search/search.aspx?orig_q=RN:21068264
Young AM, Kral MV, Bishop CM. Effects of aging and nitridation on microstructure and mechanical properties of austenitic stainless steel. J Mater Sci. 2023;58:10716–10735. doi: 10.1007/s10853-023-08659-1
Klueh RL, Swindeman RW. Mechanical properties of a modified 2 1/4 Cr-1 Mo steel for pressure vessel applications. [V-Ti-B-modified]. US: Oak Ridge National Laboratory; 1983. doi: 10.2172/5560054
Sikka VK, McCoy HE, Booker MK, et al. Heat-to-heat variation in creep properties of types 304 and 316 stainless steels. J Pressure Vessel Technol. 1975;97(4):243–251. doi: 10.1115/1.3454303
Singh AK, Louat N, Sadananda K. Dislocation network formation and coherency loss around gamma- prime precipitates in a nickel- base superalloy. MTA. 1988;19(12):2965–2973. doi: 10.1007/BF02647723
Gabb TP, Draper SL, Hull DR, et al. The role of interfacial dislocation networks in high temperature creep of superalloys. Mater Sci Eng A. 1989;118:59–69. doi: 10.1016/0921-5093(89)90058-0
Zhang JX, Wang JC, Harada H, et al. The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Materialia. 2005;53:4623–4633. doi: 10.1016/j.actamat.2005.06.013
Carroll LJ, Feng Q, Pollock TM. Interfacial dislocation networks and creep in directional coarsened ru-containing nickel-base single-crystal superalloys. Metall Mat Trans A. 2008;39:1290–1307. doi: 10.1007/s11661-008-9520-7
Chen K, Dong J, Yao Z, et al. Creep performance and damage mechanism for allvac 718Plus superalloy. Mater Sci Eng A. 2018;738:308–322. doi: 10.1016/j.msea.2018.09.088
Benz JK, Carroll LJ, Wright JK, et al. Threshold stress creep behavior of alloy 617 at intermediate temperatures. Metall Mat Trans A. 2014;45(7):3010–3022. doi: 10.1007/s11661-014-2244-y
Bagui S, Mandal M, Sahoo BK, et al. Investigation of non-classical creep behavior of Inconel 617 alloy at 700 °C and 800 °C through interrupted tests and microstructural characterizations. Mater Sci Eng A2022;832:142474 doi: 10.1016/j.msea.2021.142474.
Wilshire B, Battenbough AJ. Creep and creep fracture of polycrystalline copper. Mater Sci Eng A. 2007;443:156–166. doi: 10.1016/j.msea.2006.08.094
Hayhurst DR, Dimmer PR, Chernuka MW. Estimates of the creep rupture lifetime of structures using the finite element method. J Mech Phys Solids. 1975;23:335–350. doi: 10.1016/0022-5096(75)90032-0
Fiala J, Kloc L, Čadek J. Creep in metals at intermediate temperatures and low stresses: a review. Mater Sci Eng A. 1991;137:163–172. doi: 10.1016/0921-5093(91)90331-G
Dubiez-Le Goff S, Comportement et endommagement d’un superalliage élaboré par compression isostatique à chaud, PhD. thesis, École Nationale Supérieure des Mines de Paris, 2003.
Röesler J, Harders H, Beaker M. Creep. In: Mechanical behaviour of engineering materials. Berlin, Heidelberg: Springer; 2007. doi: 10.1007/978-3-540-73448-2_11
Oikawa H, Iijiyima Y. Diffusion behaviour of creep-resistant steels. In: Abe F, Kern TU, Viswanathan R, editors. Creep-resistant steels, woodhead publishing limited. Cambridge, England: Woodhead Publishing Series in Metals and Surface Engineering: 2008. pp. 504–518.
Maruyama K. Fracture mechanism map and fundamental aspects of creep fracture. In: Abe F, Kern TU, Viswanathan R, editors. Creep-resistant steels, woodhead publishing limited. Cambridge, England: Woodhead Publishing Series in Metals and Surface Engineering: 2008. pp. 350–364.
Swinburne TD. Stochastic dynamics of crystal defects. Switzerland: Springer International Publishing; 2015.
Zhuang Z, Liu Z, Cui Y. Dislocation mechanism-based crystal plasticity. London, England: Elsevier; 2019.
Wright JK, Carroll LJ, Cabet C, et al. Characterization of elevated temperature properties of heat exchanger and steam generator alloys. Nucl Eng Des. 2012;251:252–260. doi: 10.1016/j.nucengdes.2011.10.034
Roy AK, Virupaksha V. Performance of alloy 800H for high-temperature heat exchanger applications. Mater Sci Eng. 2007;452-453:665–672. doi: 10.1016/j.msea.2006.11.082A 452–453.
Bhanu Sankara Rao K, Schiffers H, Schuster H, et al. Temperature and strain-rate effects on low-cycle fatigue behavior of alloy 800H. MMTA. 1996;27(2):255–267. doi: 10.1007/BF02648404
Cao Y, Zhang C, Zhang C, et al. Influence of dynamic strain aging on the mechanical properties and microstructural evolution for Alloy 800H during hot deformation. Mater Sci Eng A. 2018;724:37–44. doi: 10.1016/j.msea.2018.03.074
Rao KBS, Schuster H, Halford GR. Mechanisms of high-temperature fatigue failure in alloy 800H. MMTA. 1996;27(4):851–861. doi: 10.1007/BF02649752
Huda Z. Creep behavior of materials. In: Mechanical behavior of materials. Cham: Springer International Publishing; 2022. pp. 253–265. doi: 10.1007/978-3-030-84927-6_14
Young AM, Kral MV, Bishop CM. Carbide formation accompanying internal nitridation of austenitic stainless steel. Mater Charact. 2022;184:111662. doi: 10.1016/j.matchar.2021.111662
Young AM, Kral MV, Bishop CM. Time–temperature–precipitation relations for nitrides and evaluation of internal oxidation theory for nitridation of austenitic stainless steel. Metall Mater Trans A. 2020;51:4456–4470. doi: 10.1007/s11661-020-05868-0
Beardsley AL, Bishop CM, Kral MV. A deformation mechanism map for incoloy 800h optimized using the genetic algorithm. Metall Mat Trans A. 2019;50:4098–4110. doi: 10.1007/s11661-019-05350-6
Rojas-Ulloa C, Morch H, Tuninetti V, et al. Implementation of a modified graham-walles viscosity function within a chaboche viscoplastic constitutive model. CAMWA. 2024;155:165–175. doi: 10.1016/j.camwa.2023.12.002
Drabble D, The effect of grain boundary engineering on the properties of incoloy 800H/HT, Thesis, University of Canterbury, 2010. http://hdl.handle.net/10092/6194.
Standard test methods for determining average grain size, ASTM international. E112-13, 2021.
Bsat S, Huang X. Corrosion behaviour of Alloy 800H in low density superheated steam. ISIJ Inter. 2016;56:1067–1075. doi: 10.2355/isijinternational.ISIJINT-2015-651
Krupp U, Christ H-J. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys. Metall Mater Trans A. 2000;31:47–56. doi: 10.1007/s11661-000-0051-0
University of Liège, Lagamine finite element code. (n.d.). http://www.lagamine.uliege.be/dokuwiki/doku.php/start
Welker M, Rahmel A, Schütze M. Oxidation and nitridation of alloy 800H at a growing creep crack and for unstressed samples. Metall Trans A. 1989;20:1541–1551. doi: 10.1007/BF02665510
Sawada K, Hatakeyama T, Sekido K, et al. Microstructural changes and creep-strength degradation in 18Cr-9Ni-3Cu-Nb-N steel. Mater Charact. 2021;178:111286. doi: 10.1016/j.matchar.2021.111286
Hatakeyama T, Sawada K, Hara T, et al. Three-dimensional analysis of the precipitation behavior of 18Cr–9Ni–3Cu–Nb–N steel at 973 K. Scripta Materialia. 2021;200:113904. doi: 10.1016/j.scriptamat.2021.113904
Hatakeyama T, Sawada K, Sekido K, et al. Influence of dynamic microstructural changes on the complex creep deformation behavior of 25Cr–20Ni–Nb–N steel at 873 K. Mater Sci Eng A. 2021;814:141270. doi: 10.1016/j.msea.2021.141270
Hatakeyama T, Sawada K, Sekido K, et al. Microstructural factors of the complex creep rate change in 18Cr–9Ni–3Cu–Nb–N steel. Mater Sci Eng A2022;831. 142225 doi: 10.1016/j.msea.2021.142225.