Article (Scientific journals)
Multi-Context Point Cloud Dataset and Machine Learning for Railway Semantic Segmentation
Kharroubi, Abderrazzaq; Ballouch, Zouhair; Hajji, Rafika et al.
2024In Infrastructures, 9 (4), p. 71
Peer Reviewed verified by ORBi Dataset
 

Files


Full Text
infrastructures-09-00071-with-cover.pdf
Author postprint (20.64 MB) Creative Commons License - Attribution
This study is part of the first author’s Ph.D. thesis. We thank the dataset providers. The original data used in this study are publicly available at: https://ressources.data.sncf.com/explore/dataset/nuage-points-3d for French data, and at https://data.mendeley.com/datasets/ccxpzhx9dj for Hungarian data (accessed on 28 November 2023).
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
railways; LiDAR; dataset; semantic segmentation; machine learning
Abstract :
[en] Railway scene understanding is crucial for various applications, including autonomous trains, digital twining, and infrastructure change monitoring. However, the development of the latter is constrained by the lack of annotated datasets and limitations of existing algorithms. To address this challenge, we present Rail3D, the first comprehensive dataset for semantic segmentation in railway environments with a comparative analysis. Rail3D encompasses three distinct railway contexts from Hungary, France, and Belgium, capturing a wide range of railway assets and conditions. With over 288 million annotated points, Rail3D surpasses existing datasets in size and diversity, enabling the training of generalizable machine learning models. We conducted a generic classification with nine universal classes (Ground, Vegetation, Rail, Poles, Wires, Signals, Fence, Installation, and Building) and evaluated the performance of three state-of-the-art models: KPConv (Kernel Point Convolution), LightGBM, and Random Forest. The best performing model, a fine-tuned KPConv, achieved a mean Intersection over Union (mIoU) of 86%. While the LightGBM-based method achieved a mIoU of 71%, outperforming Random Forest. This study will benefit infrastructure experts and railway researchers by providing a comprehensive dataset and benchmarks for 3D semantic segmentation. The data and code are publicly available for France and Hungary, with continuous updates based on user feedback.
Disciplines :
Computer science
Earth sciences & physical geography
Author, co-author :
Kharroubi, Abderrazzaq  ;  Université de Liège - ULiège > Sphères
Ballouch, Zouhair  ;  Université de Liège - ULiège > Sphères ; College of Geomatic Sciences and Surveying Engineering, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10101, Morocco
Hajji, Rafika  ;  Université de Liège - ULiège > Département de géographie > Geospatial Data Science and City Information Modelling (GeoScITY) ; College of Geomatic Sciences and Surveying Engineering, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10101, Morocco
Yarroudh, Anass  ;  Université de Liège - ULiège > Sphères
Billen, Roland  ;  Université de Liège - ULiège > Département de géographie > Geospatial Data Science and City Information Modelling (GeoScITY)
Language :
English
Title :
Multi-Context Point Cloud Dataset and Machine Learning for Railway Semantic Segmentation
Alternative titles :
[fr] Ensemble de données de nuages de points multi-contexte et apprentissage automatique pour la segmentation sémantique des chemins de fer
Original title :
[en] Multi-Context Point Cloud Dataset and Machine Learning for Railway Semantic Segmentation
Publication date :
09 April 2024
Journal title :
Infrastructures
eISSN :
2412-3811
Publisher :
MDPI AG
Volume :
9
Issue :
4
Pages :
71
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
Abderrazzaq Kharroubi, aspirant FNRS
Data Set :
Rail3D

This study is part of the first author’s Ph.D. thesis. We thank the dataset providers. The original data used in this study are publicly available at: https://ressources.data.sncf.com/explore/dataset/nuage-points-3d for French data, and at https://data.mendeley.com/datasets/ccxpzhx9dj for Hungarian data (accessed on 28 November 2023).

Available on ORBi :
since 14 April 2024

Statistics


Number of views
74 (16 by ULiège)
Number of downloads
57 (2 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
4
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi