gigantism; pituitary tumor; GPR101; topologically associating domain (TAD); somatostatin analog
Abstract :
[en] X-linked acrogigantism (X-LAG) is a rare form of pituitary gigantism that is associated with growth hormone (GH) and prolactin-secreting pituitary adenomas/pituitary neuroendocrine tumors (PitNETs) that develop in infancy. It is caused by a duplication on chromosome Xq26.3 that leads to the misexpression of the gene GPR101, a constitutively active stimulator of pituitary GH and prolactin secretion. GPR101 normally exists within its own topologically associating domain (TAD) and is insulated from surrounding regulatory elements. X-LAG is a TADopathy in which the duplication disrupts a conserved TAD border, leading to a neo-TAD in which ectopic enhancers drive GPR101 over-expression, thus causing gigantism. Here we trace the full diagnostic and therapeutic pathway of a female patient with X-LAG from 4Cseq studies demonstrating the neo-TAD through medical and surgical interventions and detailed tumor histopathology. The complex nature of treating young children with X-LAG is illustrated, including the achievement of hormonal control using a combination of neurosurgery and adult doses of firstgeneration somatostatin analogs.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Caruso, Manuela; Department of Pediatrics, Azienda Policlinico Università di Catania, Italy
Mazzatenta, Diego; Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
Asioli, Sofia; Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
Costanza, Giuseppe; Department of Pediatrics, Azienda Policlinico Università di Catania, Italy
Trivellin, Giampaolo; Department of Biomedical Sciences, Humanitas University, Milan, Italy ; Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
Franke, Martin; Andalusian Center for Developmental Biology (CABD), Universidad Pablo de Olavide (UPO) -Consejo Superior de Investigaciones Cientificas (CSIC), Sevilla, Spain
Abboud, Dayana ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases - Molecular Pharmacology
Hanson, Julien ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Veronique Raverot; Laboratoire d'hormonologie Centre de Biologie et Pathologie Est (CBPE)-Groupement Hospitalier Est, Hospices civils de Lyon, Bron, France
Pétrossians, Patrick ; Université de Liège - ULiège > Département des sciences cliniques > Endocrinologie
Beckers, Albert ; Université de Liège - ULiège > Département des sciences cliniques
Cappa, Marco; Innovative Therapies for Endocrinopathies, Scientific Directorate, Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
Daly, Adrian ; Université de Liège - ULiège > Département des sciences cliniques
Beckers A Petrossians P Hanson J Daly AF. The causes and consequences of pituitary gigantism. Nat Rev Endocrinol (2018) 14:705–20. doi: 10.1038/s41574-018-0114-1
Rostomyan L Daly AF Petrossians P Nachev E Lila AR Lecoq A-L. Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocr Relat Cancer (2015) 22:745–57. doi: 10.1530/ERC-15-0320
Hannah-Shmouni F Trivellin G Stratakis CA. Genetics of gigantism and acromegaly. Growth Horm IGF Res (2016) 30–31:37–41. doi: 10.1016/j.ghir.2016.08.002
Beckers A Aaltonen LA Daly AF Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev (2013) 34:239–77. doi: 10.1210/er.2012-1013
Trivellin G Daly AF Faucz FR Yuan B Rostomyan L Larco DO et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. New Engl J Med (2014) 371:2363–74. doi: 10.1056/NEJMoa1408028
Rodd C Millette M Iacovazzo D Stiles CE Barry S Evanson J et al. Somatic GPR101 duplication causing X-linked acrogigantism (XLAG)-diagnosis and management. J Clin Endocrinol Metab (2016) 101:1927–30. doi: 10.1210/jc.2015-4366
Moran A Asa SL Kovacs K Horvath E Singer W Sagman U et al. Gigantism due to pituitary mammosomatotroph hyperplasia. N Engl J Med (1990) 323:322–7. doi: 10.1056/NEJM199008023230507
Beckers A Lodish MB Trivellin G Rostomyan L Lee M Faucz FR et al. X-linked acrogigantism syndrome: clinical profile and therapeutic responses. Endocr Relat Cancer (2015) 22:353–67. doi: 10.1530/ERC-15-0038
Trivellin G FR F Daly AF Beckers A Stratakis CA. HEREDITARY ENDOCRINE TUMOURS: CURRENT STATE-OF-THE-ART AND RESEARCH OPPORTUNITIES: GPR101, an orphan GPCR with roles in growth and pituitary tumorigenesis. Endocr Relat Cancer (2020) 27:T87–97. doi: 10.1530/ERC-20-0025
Wise-Oringer BK Zanazzi GJ Gordon RJ Wardlaw SL William C Anyane-Yeboa K et al. Familial X-linked acrogigantism: Postnatal outcomes and tumor pathology in a prenatally diagnosed infant and his mother. J Clin Endocrinol Metab (2019) 104:4667–75. doi: 10.1210/jc.2019-00817
Espiner EA Carter TA Abbott GD Wrightson P. Pituitary gigantism in a 31 month old girl: endocrine studies and successful response to hypophysectomy. J Endocrinol Invest (1981) 4:445–50. doi: 10.1007/BF03348309
Blumberg DL Sklar CA David R Rothenberg S Bell J. Acromegaly in an infant. Pediatrics (1989) 83:998–1002. http://www.ncbi.nlm.nih.gov/pubmed/2657629.
Gordon RJ Bell J Chung WK David R Oberfield SE Wardlaw SL. Childhood acromegaly due to X-linked acrogigantism: long term follow-up. Pituitary (2016) 19:560–4. doi: 10.1007/s11102-016-0743-0
Abboud D Daly AF Dupuis N Bahri MA Inoue A Chevigné A et al. GPR101 drives growth hormone hypersecretion and gigantism in mice via constitutive activation of gs and Gq/11. Nat Commun (2020) 11:4752. doi: 10.1038/s41467-020-18500-x
Trivellin G Bjelobaba I Daly AF Larco DO Palmeira L Faucz FR et al. Characterization of GPR101 transcript structure and expression patterns. J Mol Endocrinol (2016) 57:97–111. doi: 10.1530/JME-16-0045
Franke M Daly AF Palmeira L Tirosh A Stigliano A Trifan E et al. Duplications disrupt chromatin architecture and rewire GPR101-enhancer communication in X-linked acrogigantism. Am J Hum Genet (2022) 109:553–70. doi: 10.1016/j.ajhg.2022.02.002
Naves LA Daly AF Dias LA Yuan B Zakir JCO Barra GB et al. Aggressive tumor growth and clinical evolution in a patient with X-linked acro-gigantism syndrome. Endocrine (2016) 51:236–44. doi: 10.1007/s12020-015-0804-6
Iacovazzo D Caswell R Bunce B Jose S Yuan B Yuan LC et al. Germline or somatic GPR101 duplication leads to X-linked acrogigantism: a clinico-pathological and genetic study. Acta Neuropathol Commun (2016) 4:56. doi: 10.1186/s40478-016-0328-1
Daly A Cuny T Rabl W Rostomyan L Statakis C Klein M et al. X-linked acro-gigantism (X-LAG) syndrome : two new cases with long-term follow-up. In: ENEA 2015 workshop. Marseilles, France: European Neuroendocrine Association (2015). Available at: https://orbi.uliege.be/handle/2268/189337.
Burren CP Williams G Coxson E Korbonits M. Effective long-term pediatric pegvisomant monotherapy to final height in X-linked acrogigantism. JCEM Case Rep (2023) 1:luad028. doi: 10.1210/jcemcr/luad028
Splinter E de Wit E van de Werken HJG Klous P de Laat W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: From fixation to computation. Methods (2012) 58:221–30. doi: 10.1016/j.ymeth.2012.04.009
Noordermeer D Leleu M Schorderet P Joye E Chabaud F Duboule D. Temporal dynamics and developmental memory of 3D chromatin architecture at hox gene loci. Elife (2014) 3:e02557. doi: 10.7554/eLife.02557
van de Werken HJG de Vree PJP Splinter E Holwerda SJB Klous P de Wit E et al. Chapter four - 4C technology: Protocols and data analysis. In: Wu C Allis CD, editors. Methods in enzymology. Amsterdam: Academic Press (2012). p. 89–112. doi: 10.1016/B978-0-12-391938-0.00004-5
Cacciari E Milani S Balsamo A Spada E Bona G Cavallo L et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J Endocrinol Invest (2006) 29:581–93. doi: 10.1007/BF03344156
Liang H Gong F Liu Z Yang Y Yao Y Wang R et al. A chinese case of X-linked acrogigantism and systematic review. Neuroendocrinology (2020) 111:1164–75. doi: 10.1159/000512240
Trarbach EB Trivellin G Grande IPP Duarte FHG Jorge AAL do Nascimento FBP et al. Genetics, clinical features and outcomes of non-syndromic pituitary gigantism: experience of a single center from sao paulo, brazil. Pituitary (2021) 24:252–61. doi: 10.1007/s11102-020-01105-4
Daly AF Yuan B Fina F Caberg J-H Trivellin G Rostomyan L et al. Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocr Relat Cancer (2016) 23:221–33. doi: 10.1530/ERC-16-0082
Daly AF Lysy PA Desfilles C Rostomyan L Mohamed A Caberg J-H et al. GHRH excess and blockade in x-LAG syndrome. Endocr Relat Cancer (2016) 23:161–70. doi: 10.1530/ERC-15-0478
Tuncer FN Doğanşen SÇ Trivellin G Stratakis CA Yarman S. Long-term clinical course and therapeutic results of a 57 years old x-LAG patient. In: Endobridge abstract book. Antalya, Turkey: Abstract O11 (2018).
Daly AF Tichomirowa MA Petrossians P Heliövaara E Jaffrain-Rea M-L Barlier A et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: An international collaborative study. J Clin Endocrinol Metab (2010) 95:E373–83. doi: 10.1210/jc.2009-2556
Bogner E-M Daly AF Gulde S Karhu A Irmler M Beckers J et al. miR-34a is upregulated in AIP-mutated somatotropinomas and promotes octreotide resistance. Int J Cancer (2020) 147:3523–38. doi: 10.1002/ijc.33268
Zimmerman D Young WF Jr.Ebersold MJ Scheithauer BW Kovacs K Horvath E et al. Congenital gigantism due to growth hormone-releasing hormone excess and pituitary hyperplasia with adenomatous transformation. J Clin Endocrinol Metab (1993) 76:216–22. doi: 10.1210/jcem.76.1.8421089
Colao A Bronstein MD Brue T De Marinis L Fleseriu M Guitelman M et al. Pasireotide for acromegaly: long-term outcomes from an extension to the Phase III PAOLA study. Eur J Endocrinol (2020) 182:583–94. doi: 10.1530/EJE-19-0762
Muhammad A Coopmans EC Delhanty P Dallenga AHG Haitsma IK Janssen JAMJL et al. Efficacy and safety of switching to pasireotide in acromegaly patients controlled with pegvisomant and somatostatin analogues: PAPE extension study. Eur J Endocrinol (2018) 179:269–77. doi: 10.1530/EJE-18-0353
Bronstein MD Fleseriu M Neggers S Colao A Sheppard M Gu F et al. Switching patients with acromegaly from octreotide to pasireotide improves biochemical control: crossover extension to a randomized, double-blind, Phase III study. BMC Endocr Disord (2016) 16:16. doi: 10.1186/s12902-016-0096-8
Coopmans EC van der Lely AJ Schneiders JJ Neggers SJCMM. Potential antitumour activity of pasireotide on pituitary tumours in acromegaly. Lancet Diabetes Endocrinol (2019) 7:425–6. doi: 10.1016/S2213-8587(19)30113-5
Daly A Rostomyan L Betea D Bonneville JF Villa C Pellegata NS et al. AIP-mutated acromegaly resistant to first-generation somatostatin analogs: long-term control with pasireotide LAR in two patients. Endocr Connect (2019) 8:367–77. doi: 10.1530/EC-19-0004
van Santen SS Daly AF Buchfelder M Coras R Zhao Y Beckers A et al. Complicated clinical course in incipient gigantism due to treatment-resistant aryl hydrocarbon receptor-interacting protein-mutated pediatric somatotropinoma. AACE Clin Case Rep (2021) 8:119–23. doi: 10.1016/J.AACE.2021.12.003
Mangupli R Rostomyan L Castermans E Caberg J-H Camperos P Krivoy J et al. Combined treatment with octreotide LAR and pegvisomant in patients with pituitary gigantism: clinical evaluation and genetic screening. Pituitary (2016) 19:507–14. doi: 10.1007/s11102-016-0732-3
Goldenberg N Racine MS Thomas P Degnan B Chandler W Barkan A. Treatment of pituitary gigantism with the growth hormone receptor antagonist pegvisomant. J Clin Endocrinol Metab (2008) 93:2953–6. doi: 10.1210/jc.2007-2283
Müssig K Gallwitz B Honegger J Strasburger CJ Bidlingmaier M Machicao F et al. Pegvisomant treatment in gigantism caused by a growth hormone-secreting giant pituitary adenoma. Exp Clin Endocrinol Diabetes (2007) 115:198–202. doi: 10.1055/s-2007-956172
Joshi K Daly AF Beckers A Zacharin M. Resistant paediatric somatotropinomas due to AIP mutations: Role of pegvisomant. Horm Res Paediatr (2018) 90:196–202. doi: 10.1159/000488856
Bonert VS Kennedy L Petersenn S Barkan A Carmichael J Melmed S. Lipodystrophy in patients with acromegaly receiving pegvisomant. J Clin Endocrinol Metab (2008) 93:3515–8. doi: 10.1210/jc.2008-0833
Petrossians P Borges-Martins L Espinoza C Daly A Betea D Valdes-Socin H et al. Gross total resection or debulking of pituitary adenomas improves hormonal control of acromegaly by somatostatin analogs. Eur J Endocrinol (2005) 152:61–6. doi: 10.1530/eje.1.01824