Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control
[en] Bruchids are the most important pests of leguminous seeds in the world. In this study, the focus was done on Callosobruchus maculatus, a serious pest of Vigna unguiculata seeds. As no efficient control methods preventing collateral effects on beneficials currently exist, this study investigated whether RNA interference (RNAi) could provide a new biotechnological and selective tool for bruchids control. Three principal objectives were followed including (i) the identification of all RNAi machinery core components and a key protein to silence in C. maculatus genome (c.f., dicer-2, argonaute-2, R2D2, and laccase 1), (ii) the identification of suitable reference gene for RT-qPCR analyses, and (iii) the micro-injection of dsRNA coding for laccase 1 to adults of C. maculatus to assess gene expression levels by RT-qPCR and potentially related mortalities. Phylogenetical analyses performed from transcriptomic information successfully identified all necessary proteins in the RNAi mechanism and also the open reading frame of laccase 1 in C. maculatus. A new reference gene was identified (i.e., alpha-tubuline 1) and coupled with glutiathone S transferase for RT-qPCR analyses. Double-stranded RNAs coding for laccase 1 and green fluorescent protein (control) were produced and 400 ng of each dsRNA were micro-injected into C. maculatus adults. RT-qPCR analyses revealed a stable significant decrease in laccase 1 expression in about 80% of adults treated with laccase 1 dsRNA after three days post-injection. No significant mortalities were observed which is probably related to the non-exposure of adults to anti-nutritional factors that are usually regulated by laccase. Further research should focus either on the feeding larval stage which is directly exposed to anti-nutritional factors, or on other target genes to induce dead phenotypes. This study is the first gene silencing report on a bruchid species and supports RNAi as a potential future method of control.
Disciplines :
Agriculture & agronomy Entomology & pest control Biotechnology
Author, co-author :
Segers, Arnaud ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Francis, Frédéric ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Caparros Megido, Rudy ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Language :
English
Title :
Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s Control
Kingsolver J.M. Handbook of the Bruchidae of the United States and Canada (Insecta, Coleoptera) U.S. Department of Agriculture, Agricultural Research Service Washington, DC, USA 2004
Segers A. Caparros Megido R. Lognay G. Francis F. Overview of Bruchus rufimanus Boheman 1833 (Coleoptera: Chrysomelidae): Biology, chemical ecology and semiochemical opportunities in integrated pest management programs Crop Prot. 2021 140 105411 10.1016/j.cropro.2020.105411
Kergoat G.J. Silvain J.-F. Delobel A. Tuda M. Anton K.-W. Defining the limits of taxonomic conservatism in host-plant use for phytophagous insects: Molecular systematics and evolution of host-plant associations in the seed-beetle genus Bruchus Linnaeus (Coleoptera: Chrysomelidae: Bruchinae) Mol. Phylogenet Evol. 2007 43 251 269 10.1016/j.ympev.2006.11.026 17276089
Caswell G.H. The Development and Extension of Nonchemical Control Techniques for Stored Cowpea in Nigeria Institute for Agricultural Research, Samaru, Ahmadu Bello University Zaria, Nigeria 1977
Credland P.F. Dick K.M. Food consumption by larvae of three strains of Callosobruchus maculatus (Coleoptera: Bruchidae) J. Stored Prod. Res. 1987 23 31 40 10.1016/0022-474X(87)90033-6
Howe R.W. Currie J.E. Some laboratory observations on the rates of development, mortality and oviposition of several species of Bruchidae breeding in stored pulses Bull. Entomol. Res. 1964 55 437 477 10.1017/S0007485300049580
Mobarakian M. Zamani A.A. Karmizadeh J. Moeeny Naghadeh N. Emami M.S. Modelling development of Callosobruchus maculatus and Anisopteromalus calandrae at various constant temperatures using linear and non-linear models Biocontrol Sci. Technol. 2014 24 1308 1320 10.1080/09583157.2014.935294
van Alebeek F. Foraging Behaviour of the Egg Parasitoid Uscana Lariophaga: Towards Biological Control of Bruchid Pests in Stored Cowpea in West Africa Ph.D. Thesis 1996 Available online: https://edepot.wur.nl/202236 (accessed on 6 February 2023)
Tiroesele B. Thomas K. Seketeme S. Control of Cowpea Weevil, Callosobruchus Maculatus (F.) (Coleoptera: Bruchidae), Using Natural Plant Products Insects 2015 6 77 84 10.3390/insects6010077
Naqqash M.N. Gökçe A. Bakhsh A. Salim M. Insecticide resistance and its molecular basis in urban insect pests Parasitol. Res. 2016 115 1363 1373 10.1007/s00436-015-4898-9
Karaağaç S.U. Insecticide Resistance IntechOpen London, UK 2012 978-953-307-780-2
Vivekanandhan P. Thendralmanikandan A. Kweka E.J. Mahande A.M. Resistance to temephos in Anopheles stephensi larvae is associated with increased cytochrome P450 and α-esterase genes overexpression Int. J. Trop. Insect Sci. 2021 41 2543 2548 10.1007/s42690-021-00434-6
Aziz E.E. Abbass M.H. Chemical composition and efficiency of five essential oils against the pulse beetle Callosobruchus maculatus (F.) on Vigna radiata seeds Am-Eurasian J. Agric. Environ. Sci. 2010 8 411 419
Nattudurai G. Baskar K. Paulraj M.G. Islam V.I.H. Ignacimuthu S. Duraipandiyan V. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae Environ. Sci. Pollut. Res. Int. 2017 24 1619 1629 10.1007/s11356-016-7857-9
Idoko J.E. Ileke K.D. Comparative evaluation of insecticidal properties of essential oils of some selected botanicals as bio-pesticides against Cowpea bruchid, Callosobruchus maculatus (Fabricius) [Coleoptera: Chrysomelidae] Bull. Natl. Res. Cent. 2020 44 119 10.1186/s42269-020-00380-2
Esther Ojebode M. Ojo Olaiya C. Efficacy of Some Plant Extracts as Storage Protectants against Callosobruchus maculatus J. Biotechnol. Biomater. 2016 6 217 10.4172/2155-952X.1000217
Rodrigues T.B. Figueira A. Management of Insect Pest by RNAi—A New Tool for Crop Protection IntechOpen London, UK 2016 978-953-51-2272-2
Zhao C. Alvarez Gonzales M.A. Poland T.M. Mittapalli O. Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis) J. Insect Physiol. 2015 72 70 78 10.1016/j.jinsphys.2014.12.002
Kim K. Lee Y.S. Harris D. Nakahara K. Carthew R.W. The RNAi Pathway Initiated by Dicer-2 in Drosophila Cold Spring Harb. Symp. Quant. Biol. 2006 71 39 44 10.1101/sqb.2006.71.008
Zamore P.D. Tuschl T. Sharp P.A. Bartel D.P. RNAi: Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals Cell 2000 101 25 33 10.1016/S0092-8674(00)80620-0 10778853
Liu Q. Rand T.A. Kalidas S. Du F. Kim H.-E. Smith D.P. Wang X. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway Science 2003 301 1921 1925 10.1126/science.1088710
Meister G. Tuschl T. Mechanisms of gene silencing by double-stranded RNA Nature 2004 431 343 349 10.1038/nature02873 15372041
Kyre B.R. Bentz B.J. Rieske L.K. Susceptibility of mountain pine beetle (Dendroctonus ponderosae Hopkins) to gene silencing through RNAi provides potential as a novel management tool For. Ecol. Manag. 2020 473 118322 10.1016/j.foreco.2020.118322
Hammond S.M. Dicing and slicing: The core machinery of the RNA interference pathway FEBS Lett. 2005 579 5822 5829 10.1016/j.febslet.2005.08.079
Hammond S.M. Bernstein E. Beach D. Hannon G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells Nature 2000 404 293 296 10.1038/35005107
Sen G.L. Blau H.M. A brief history of RNAi: The silence of the genes FASEB J. 2006 20 1293 1299 10.1096/fj.06-6014rev 16816104
Baum J.A. Roberts J.K. Chapter Five—Progress Towards RNAi-Mediated Insect Pest Management Advances in Insect Physiology Dhadialla T.S. Gill S.S. Insect Midgut and Insecticidal Proteins; Academic Press Cambridge, MA, USA 2014 Volume 47 249 295
Chen J. Peng Y. Zhang H. Wang K. Zhao C. Zhu G. Reddy Palli S. Han Z. Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA RNA Biol. 2021 18 1747 1759 10.1080/15476286.2020.1868680 33397184
Whyard S. Singh A.D. Wong S. Ingested double-stranded RNAs can act as species-specific insecticides Insect Biochem. Mol. Biol. 2009 39 824 832 10.1016/j.ibmb.2009.09.007
Li H. Khajuria C. Rangasamy M. Gandra P. Fitter M. Geng C. Woosely A. Hasler J. Schulenberg G. Worden S. et al. Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults J. Appl. Entomol. 2015 139 432 445 10.1111/jen.12224
Cappelle K. de Oliveira C.F.R. Van Eynde B. Christiaens O. Smagghe G. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut Insect Mol. Biol. 2016 25 315 323 10.1111/imb.12222 26959524
Guo W.-C. Fu K.-Y. Yang S. Li X.-X. Li G.-Q. Instar-dependent systemic RNA interference response in Leptinotarsa decemlineata larvae Pestic. Biochem. Physiol. 2015 123 64 73 10.1016/j.pestbp.2015.03.006
Huvenne H. Smagghe G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: A review J. Insect Physiol. 2010 56 227 235 10.1016/j.jinsphys.2009.10.004
Kola V.S.R. Renuka P. Madhav M.S. Mangrauthia S.K. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing Front. Physiol. 2015 6 119 10.3389/fphys.2015.00119
Yu N. Christiaens O. Liu J. Niu J. Cappelle K. Caccia S. Huvenne H. Smagghe G. Delivery of dsRNA for RNAi in insects: An overview and future directions Insect Sci. 2013 20 4 14 10.1111/j.1744-7917.2012.01534.x
Joga M.R. Zotti M.J. Smagghe G. Christiaens O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far Front. Physiol. 2016 7 553 10.3389/fphys.2016.00553
Willow J. Veromann E. Highly Variable Dietary RNAi Sensitivity Among Coleoptera Front. Plant Sci. 2021 12 2914 10.3389/fpls.2021.790816 34950174
Baum J.A. Bogaert T. Clinton W. Heck G.R. Feldmann P. Ilagan O. Johnson S. Plaetinck G. Munyikwa T. Pleau M. et al. Control of coleopteran insect pests through RNA interference Nat. Biotechnol. 2007 25 1322 1326 10.1038/nbt1359 17982443
Vélez A.M. Fishilevich E. Rangasamy M. Khajuria C. McCaskill D.G. Pereira A.E. Gandra P. Frey M.L. Worden S.E. Whitlock S.L. et al. Control of western corn rootworm via RNAi traits in maize: Lethal and sublethal effects of Sec23 dsRNA Pest. Manag. Sci. 2020 76 1500 1512 10.1002/ps.5666 31677217
Zhang Y. Fan J. Francis F. Chen J. Molecular characterization and gene silencing of Laccase 1 in the grain aphid, Sitobion avenae Arch Insect Biochem. Physiol. 2018 97 e21446 10.1002/arch.21446
Lattanzio V. Terzano R. Cicco N. Cardinali A. Venere D.D. Linsalata V. Seed coat tannins and bruchid resistance in stored cowpea seeds J. Sci. Food Agric. 2005 85 839 846 10.1002/jsfa.2024
Sayadi A. Immonen E. Bayram H. Arnqvist G. The De Novo Transcriptome and Its Functional Annotation in the Seed Beetle Callosobruchus maculatus PLoS ONE 2016 11 e0158565 10.1371/journal.pone.0158565
de Castro E. Sigrist C.J.A. Gattiker A. Bulliard V. Langendijk-Genevaux P.S. Gasteiger E. Bairoch A. Hulo N. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins Nucleic Acids Res. 2006 34 362 365 10.1093/nar/gkl124
Janusz G. Pawlik A. Świderska-Burek U. Polak J. Sulej J. Jarosz-Wilkołazka A. Paszczyński A. Laccase Properties, Physiological Functions, and Evolution Int. J. Mol. Sci. 2020 21 966 10.3390/ijms21030966
Kumar S. Stecher G. Li M. Knyaz C. Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms Mol. Biol. Evol. 2018 35 1547 1549 10.1093/molbev/msy096
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res. 2004 32 1792 1797 10.1093/nar/gkh340
Shakeel M. Rodriguez A. Tahir U.B. Jin F. Gene expression studies of reference genes for quantitative real-time PCR: An overview in insects Biotechnol. Lett. 2018 40 227 236 10.1007/s10529-017-2465-4 29124515
Wallace M. Rieske L.K. Validation of reference genes for quantitative PCR in the forest pest, Ips calligraphus Sci. Rep. 2021 11 23523 10.1038/s41598-021-02890-z 34876626
Bustin S.A. Benes V. Garson J.A. Hellemans J. Huggett J. Kubista M. Mueller R. Nolan T. Pfaffl M.W. Shipley G.L. et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments Clin. Chem. 2009 55 611 622 10.1373/clinchem.2008.112797 19246619
Taylor S.C. Nadeau K. Abbasi M. Lachance C. Nguyen M. Fenrich J. The Ultimate qPCR Experiment: Producing Publication Quality, Reproducible Data the First Time Trends Biotechnol. 2019 37 761 774 10.1016/j.tibtech.2018.12.002
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res 2001 29 e45 10.1093/nar/29.9.e45
Vandesompele J. De Preter K. Pattyn F. Poppe B. Van Roy N. De Paepe A. Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes Genome Biol. 2002 3 research0034.1 10.1186/gb-2002-3-7-research0034
Brar G.S. Kaur G. Singh S. Shukla J.N. Pandher S. Identification and validation of stage-specific reference genes for gene expression analysis in Callosobruchus maculatus (Coleoptera: Bruchidae) Gene Expr. Patterns 2022 43 119233 10.1016/j.gep.2022.119233
Kaplan E.L. Meier P. Nonparametric Estimation from Incomplete Observations J. Am. Stat. Assoc. 1958 53 457 481 10.1080/01621459.1958.10501452
Fire A. Xu S. Montgomery M.K. Kostas S.A. Driver S.E. Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans Nature 1998 391 806 811 10.1038/35888
Fire A. Albertson D. Harrison S.W. Moerman D.G. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle Development 1991 113 503 514 10.1242/dev.113.2.503
Schmitt-Engel C. Schultheis D. Schwirz J. Ströhlein N. Troelenberg N. Majumdar U. Dao V.A. Grossmann D. Richter T. Tech M. et al. The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology Nat. Commun. 2015 6 7822 10.1038/ncomms8822 26215380
Yang C.-H. Guo J.-Y. Chu D. Ding T.-B. Wei K.-K. Cheng D.-F. Wan F.-H. Secretory laccase 1 in Bemisia tabaci MED is involved in whitefly-plant interaction Sci. Rep. 2017 7 3623 10.1038/s41598-017-03765-y 28620217
Hasegawa M. Fujiwara M. Relative Efficiencies of the Maximum Likelihood, Maximum Parsimony, and Neighbor-Joining Methods for Estimating Protein Phylogeny Mol. Phylogenet. Evol. 1993 2 1 5 10.1006/mpev.1993.1001
Ota S. Li W.-H. NJML: A Hybrid Algorithm for the Neighbor-Joining and Maximum-Likelihood Methods Mol. Biol. Evol. 2000 17 1401 1409 10.1093/oxfordjournals.molbev.a026423
Tomoyasu Y. Miller S.C. Tomita S. Schoppmeier M. Grossmann D. Bucher G. Exploring systemic RNA interference in insects: A genome-wide survey for RNAi genes in Tribolium Genome Biol. 2008 9 R10 10.1186/gb-2008-9-1-r10 18201385
Dittmer N.T. Suderman R.J. Jiang H. Zhu Y.-C. Gorman M.J. Kramer K.J. Kanost M.R. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae Insect Biochem. Mol. Biol. 2004 34 29 41 10.1016/j.ibmb.2003.08.003 14723895
Dwivedi U.N. Singh P. Pandey V.P. Kumar A. Structure–function relationship among bacterial, fungal and plant laccases J. Mol. Catal. B Enzym. 2011 68 117 128 10.1016/j.molcatb.2010.11.002
Thomas B.R. Yonekura M. Morgan T.D. Czapla T.H. Hopkins T.L. Kramer K.J. A trypsin-solubilized laccase from pharate pupal integument of the tobacco hornworm, Manduca sexta Insect Biochem. 1989 19 611 622 10.1016/0020-1790(89)90095-4
Tomoyasu Y. Denell R.E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult development Dev. Genes Evol. 2004 214 575 578 10.1007/s00427-004-0434-0 15365833
Liang Q. Laccase-1 in the Pea Aphid, Acyrthosiphon pisum (Harris) Master’s Thesis Kansas State University Manhattan, KS, USA 2006
Hattori M. Konishi H. Tamura Y. Konno K. Sogawa K. Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps J. Insect Physiol. 2005 51 1359 1365 10.1016/j.jinsphys.2005.08.010
Bustin S.A. Benes V. Nolan T. Pfaffl M.W. Quantitative real-time RT-PCR--a perspective J. Mol. Endocrinol. 2005 34 597 601 10.1677/jme.1.01755 15956331
Xiao X. Ma J. Wang J. Wu X. Li P. Yao Y. Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR Front. Plant Sci. 2015 5 788 10.3389/fpls.2014.00788 25653658
Keeling P.J. Doolittle W.F. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family Mol. Biol. Evol. 1996 13 1297 1305 10.1093/oxfordjournals.molbev.a025576 8952074
Bustin S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems J. Mol. Endocrinol. 2002 29 23 39 10.1677/jme.0.0290023
Enayati A.A. Ranson H. Hemingway J. Insect glutathione transferases and insecticide resistance Insect Mol. Biol. 2005 14 3 8 10.1111/j.1365-2583.2004.00529.x
Andersen C.L. Jensen J.L. Ørntoft T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets Cancer Res. 2004 64 5245 5250 10.1158/0008-5472.CAN-04-0496
Pfaffl M.W. Tichopad A. Prgomet C. Neuvians T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations Biotechnol. Lett. 2004 26 509 515 10.1023/B:BILE.0000019559.84305.47
Silver N. Best S. Jiang J. Thein S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR BMC Mol. Biol. 2006 7 33 10.1186/1471-2199-7-33
Perkin L.C. Elpidina E.N. Oppert B. RNA interference and dietary inhibitors induce a similar compensation response in Tribolium castaneum larvae Insect Mol. Biol. 2017 26 35 45 10.1111/imb.12269
De Loecker S. Protection des Graines Emmagasinées de Niébé (Vigna unguiculata (L.) Walp.)—Influence de Certains Facteurs Climatiques et d’extraits de Feuilles de Azadirachta indica A. de Jussieu sur la bruche du niébé (Callosobruchus maculatus (F.) Faculté des sciences agronomiques de l’Etat 1982
Ulrich J. Dao V.A. Majumdar U. Schmitt-Engel C. Schwirz J. Schultheis D. Ströhlein N. Troelenberg N. Grossmann D. Richter T. et al. Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target BMC Genom. 2015 16 674 10.1186/s12864-015-1880-y
Bucher G. Scholten J. Klingler M. Parental RNAi in Tribolium (Coleoptera) Curr. Biol. 2002 12 R85 R86 10.1016/S0960-9822(02)00666-8 11839285
Mehlhorn S. Ulrich J. Baden C.U. Buer B. Maiwald F. Lueke B. Geibel S. Bucher G. Nauen R. The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests Pestic. Biochem. Physiol. 2021 176 104870 10.1016/j.pestbp.2021.104870 34119215
Kontogiannatos D. Kolliopoulou A. Swevers L. The “Trojan horse” approach for successful RNA interference in insects RNAi for Plant Improvement and Protection CABI Wallingford UK 2021 25 39
Zhu F. Xu J. Palli R. Ferguson J. Palli S.R. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata Pest Manag. Sci. 2011 67 175 182 10.1002/ps.2048 21061270
Petek M. Coll A. Ferenc R. Razinger J. Gruden K. Validating the Potential of Double-Stranded RNA Targeting Colorado Potato Beetle Mesh Gene in Laboratory and Field Trials Front. Plant Sci. 2020 11 1250 10.3389/fpls.2020.01250