Unpublished conference/Abstract (Scientific congresses and symposiums)
Fast and accurate Neural-Network-based Ferromagnetic Laminated Stack Model for Electrical Machine Simulations in Periodic Regime
Purnode, Florent; Henrotte, François; Louppe, Gilles et al.
2023COMPUMAG 2023
Peer reviewed
 

Files


Full Text
main.pdf
Author postprint (3.15 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Magnetic hysteresis; Magnetic losses; Neural Networks; Nonhomogeneous media
Abstract :
[en] Electromagnetic fields and eddy currents in thin electrical steel laminations are governed by the laws of magnetodynamics with hysteresis. Conventional homogenization techniques are however complex and very time-consuming. In consequence, hysteresis and eddy currents in ferromagnetic laminated cores are usually outright disregarded in finite element simulations, considering only saturation, and magnetic losses are only evaluated a posteriori, by means of a Steinmetz-Bertotti like empirical formula. This model simplification yields however potentially inaccurate results in the presence of non-sinusoidal B-fields, common in modern electrical devices. Assuming a time-periodic excitation of the system, a more accurate and fast approach, based on homogenization and neural networks (NN), is presented. A parametric homogenized material law is used in the macroscopic model, whose parameters are given element-wise by a NN according to the actual local waveform of the magnetic field. It is shown that, with an appropriately trained NN, this NN-based material law allows computing fields and losses inside ferromagnetic laminated stacks efficiently and accurately.
Disciplines :
Electrical & electronics engineering
Materials science & engineering
Author, co-author :
Purnode, Florent ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Henrotte, François  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Geuzaine, Christophe  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
Fast and accurate Neural-Network-based Ferromagnetic Laminated Stack Model for Electrical Machine Simulations in Periodic Regime
Publication date :
04 September 2023
Event name :
COMPUMAG 2023
Event organizer :
International Compumag Society
Event place :
Kyoto, Japan
Event date :
du 22 mai 2023 au 26 mai 2023
Audience :
International
Peer reviewed :
Peer reviewed
Available on ORBi :
since 29 February 2024

Statistics


Number of views
46 (12 by ULiège)
Number of downloads
35 (5 by ULiège)

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi