Unpublished conference/Abstract (Scientific congresses and symposiums)
Fast and accurate Neural-Network-based Ferromagnetic Laminated Stack Model for Electrical Machine Simulations in Periodic Regime
Purnode, Florent; Henrotte, François; Louppe, Gilles et al.
2023COMPUMAG 2023
Peer reviewed
 

Files


Full Text
main.pdf
Author postprint (3.15 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Magnetic hysteresis; Magnetic losses; Neural Networks; Nonhomogeneous media
Abstract :
[en] Electromagnetic fields and eddy currents in thin electrical steel laminations are governed by the laws of magnetodynamics with hysteresis. Conventional homogenization techniques are however complex and very time-consuming. In consequence, hysteresis and eddy currents in ferromagnetic laminated cores are usually outright disregarded in finite element simulations, considering only saturation, and magnetic losses are only evaluated a posteriori, by means of a Steinmetz-Bertotti like empirical formula. This model simplification yields however potentially inaccurate results in the presence of non-sinusoidal B-fields, common in modern electrical devices. Assuming a time-periodic excitation of the system, a more accurate and fast approach, based on homogenization and neural networks (NN), is presented. A parametric homogenized material law is used in the macroscopic model, whose parameters are given element-wise by a NN according to the actual local waveform of the magnetic field. It is shown that, with an appropriately trained NN, this NN-based material law allows computing fields and losses inside ferromagnetic laminated stacks efficiently and accurately.
Disciplines :
Electrical & electronics engineering
Materials science & engineering
Author, co-author :
Purnode, Florent ;  Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Henrotte, François  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Geuzaine, Christophe  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
Fast and accurate Neural-Network-based Ferromagnetic Laminated Stack Model for Electrical Machine Simulations in Periodic Regime
Publication date :
04 September 2023
Event name :
COMPUMAG 2023
Event organizer :
International Compumag Society
Event place :
Kyoto, Japan
Event date :
du 22 mai 2023 au 26 mai 2023
Audience :
International
Peer reviewed :
Peer reviewed
Available on ORBi :
since 29 February 2024

Statistics


Number of views
36 (9 by ULiège)
Number of downloads
26 (3 by ULiège)

Bibliography


Similar publications



Contact ORBi