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Electromagnetic fields and eddy currents in thin electrical steel laminations are governed by the laws of magnetodynamics with
hysteresis. Conventional homogenization techniques are however complex and very time-consuming. In consequence, hysteresis and
eddy currents in ferromagnetic laminated cores are usually outright disregarded in finite element simulations, considering only
saturation, and magnetic losses are only evaluated a posteriori, by means of a Steinmetz-Bertotti like empirical formula. This model
simplification yields however potentially inaccurate results in the presence of non-sinusoidal B-fields, common in modern electrical
devices. Assuming a time-periodic excitation of the system, a more accurate and fast approach, based on homogenization and neural
networks (NN), is presented. A parametric homogenized material law is used in the macroscopic model, whose parameters are given
element-wise by a NN according to the actual local waveform of the magnetic field. It is shown that, with an appropriately trained
NN, this NN-based material law allows computing fields and losses inside ferromagnetic laminated stacks efficiently and accurately.

Index Terms—Magnetic hysteresis, Magnetic losses, Neural Networks, Nonhomogeneous media.

I. INTRODUCTION

ESPITE an urgent need in industry, there does not yet

exist a practical and accurate simulation method able to
account for magnetic losses in ferromagnetic laminated cores
in electrical machine simulations [1]. The detailed efficiency
analysis of electrical machines is thus still an open problem.
The complexity of this question is due to the fact that magnetic
losses are the macroscopic outcome of an intricate combination
of micro- or mesoscopic level physical phenomena: eddy cur-
rents, skin effect, saturation and hysteresis. Those phenomena
are strongly influenced by the microstructure of the ferromag-
netic material, but also by the laminated structure of the cores.
The magnetic losses are thus actually determined at geomet-
rical scales much smaller than that of the electrical machine
applications, thus advocating strongly for a homogenization
approach. In the proposed approach, the homogenized H — B
relationship is approximated by a macroscopic ﬁ(B,B,pk)
law, which is used as a conventional constitutive relationship
in a 2D modeling of an electrical machine. Moreover, the pj
parameters in this law are determined locally in each finite ele-
ment so as to represent at best the material response to the local
magnetic field waveform H(¢). Following recent developments
introduced by machine learning in multi-scale modeling [2],
[3], the mapping H(¢) — pg, required when assembling the
macroscopic finite element system, can be efficiently handled
by a specifically trained NN, with a considerable speed-up with
respect to a direct evaluation.

II. ONE-DIMENSIONAL LAMINATION PROBLEM

As laminations are large with respect to their thickness, fields
and current distributions can be accurately resolved by solving
a one-dimensional (1D) finite element magnetodynamic simu-
lation across half the lamination thickness [4]. This 1D model
is able to generate the relevant mesoscopic information at
the inside lamination level. After appropriate homogenization,
macroscale H and B fields are obtained which could directly
be used in an electrical machine simulation, leading to accurate
but also highly time-and-memory-consuming results.

III. THE PARAMETRIC HOMOGENIZED MATERIAL LAW

Rather than directly solving the 1D lamination problem
when evaluating the local material law, it is proposed to use
an intermediate parametric homogenized material law [4]:
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This law is designed to account for all physical phenomena
occurring in ferromagnetic laminations, that is: a reversible
anhysteretic saturation curve (pg, p1 and p2), an irreversible
dynamic eddy current term (p3) and an irreversible hysteresis
term (p4 and ps). The law (1) allows a good approximation
of the 1D lamination problem solution, and it can be used
directly as a constitutive law in a macroscopic simulation.
This nevertheless assumes that the p;, parameters are “wisely”
chosen, i.e., that every finite element receives a set of pj
parameters adapted to the local magnetic field variation H(¢)
in that element. Adapted p; parameters could be identified as
those that minimize in the mean-square-error (MSE) sense the
representation error ||H(t) — H(B(t), B(t), px)|| over one pe-
riod. In this error, the magnetic field H(¢) is obtained by means
of a preliminary macroscopic simulation with a conventional
anhysteretic material law, and the field B(¢) is the result of the
1D lamination problem. This approach nevertheless remains
slow, as it requires solving the 1D lamination problem and
performing a MSE minimization for every element in the mesh.
Alternatively, it is proposed in this paper to use a NN to give
the adapted p; parameters as a function of the local waveform
H(t), i.e., to realize more efficiently the needed H(t) — py

mapping.
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IV. NEURAL NETWORK ARCHITECTURE AND LEARNING

The NN is developed in the fashion of an autoencoder
(Fig. 1). A periodic discretized H(t) sequence is given at
the input of an encoder block designed to predict the py
parameters. This encoder is made up of different blocks:
an equivariance block to consider identically all sequences
image of each other by a spatial rotation and/or phase shift;



a normalization layer to facilitate the learning; a multi-layer
perceptron (MLP); and an element-wise normalization of the
pr parameters, defining a characteristic range for each py
independently. The p; parameters given by the encoder are
injected, together with the B field solution of the 1D lamination
problem, into the I:I(B, B, pr) law to obtain an approximation
H of the input H. An error between H and H is computed
and back-propagated to perform the MLP learning. This auto-
encoder-like learning ensures to directly minimize the error on
the ﬂ(B, B, px) law, without need for exact a priori py, values.
Using a training and a validation dataset both composed of
20000 artificial periodic H and corresponding B sequences,
generated in about 4 minutes, and using the square-root of
the training error (see Fig. 1) for evaluation, both the training
and validation error fall to 10 % after 5 minutes of training.
When testing the neural network on actual H sequences
obtained during a macroscopic simulation using an anhysteretic
constitutive law, a 12 % error is obtained.
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Fig. 1: Autoencoder-like architecture and learning.

V. ANALYSIS

The parametric homogenized material law with NN-
identified parameters provides a good approximation of the
1D lamination problem solution at reduced cost. The encoder
can assess 10° sequences in approximately 17 seconds while
the direct evaluation would involve solving the 1D lamination
problem for each of the 10° sequences (about 10 minutes
in total) and performing the corresponding MSE regressions
(significant time whatever the algorithm used). It is now
possible to rapidly provide every element of a macroscopic
simulation with p; parameters, hence unlocking the use of the
I:I(B, B, pr) law as a constitutive material law and allowing a
direct loss computation (see Fig. 2). The distributions of the
P parameters over the cross-section of a standard interior
permanent machine are shown in Fig. 3. Although all elements
are evaluated independently, the distributions are smooth and
exhibit the expected symmetries.

VI. CONCLUSION

The approach presented in this paper is based on two key
elements: (i) an accurate mesoscopic model to resolve fields
and losses inside ferromagnetic lamination under arbitrary
2D vector magnetic field excitations, and (ii) a macroscopic
parametric material law for which an exact Jacobian matrix can
be evaluated (ensuring convergence of the Newton-Raphson
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Fig. 2: (a) H, — B, and Hy, — B, curves obtained from an
initial anhysteretic computation. The two loops have opposite
orientations and their areas sum up to zero as the material
is non-dissipative. (b) Comparison of the previous curves
(recalled in dash lines) with H, — B, and H, — B, curves
obtained with the parametric homogenized material law (1)
after identification of the pj parameters by evaluation of the
NN. The loops have now the same orientation and the sum
of their areas represent the simulated magnetic losses. (c)
Comparison of the H, — B, and H,— B, curves obtained with
the parametric homogenized material law (1) (dashed lines) and
with the homogenized lamination model, for the same local
magnetic field. The match is not perfect, because the law (1)
is only a convenient approximation, but the essential features
of the fields are captured.
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Fig. 3: Element-wise p;, parameters from encoder evaluation.
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scheme) and whose element-wise parameters are to be chosen
to represent at best the response of the material to the local
magnetic field waveform. It is shown that a properly trained
NN can achieve this parameter identification orders of mag-
nitude faster than a standard least-square error minimization.
At the end, designers dispose of a fast and robust technique to
compute fields and losses a priori in ferromagnetic laminated
cores, with a provable accuracy and accounting for the higher
field harmonics.
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