Abstract :
[en] This research study concerns an experimental, budget-friendly, electricity-powered apparatus for bench-scale fire testing. The apparatus consists of various elements, of which the most important are ceramic heating pads, used to impose heat fluxes on exposed surfaces of specimens. The test method allows to control the heating pads’ temperature and to adjust the distance between the heating pads and the specimen to obtain well-defined heat fluxes up to 50–60 kW/m2. Higher heat fluxes and temperatures can be obtained by setting the heating pads in full power mode, with or without the use of a thermal shield, which can lead to heat fluxes up to 150 kW/m2. The heating and thermal boundary conditions imposed by the apparatus are characterised and discussed, and the thickness of the convective boundary layer at the heating pads’ surface is estimated significantly lower than in the case of gas-fired radiant panels. The performance of the apparatus is analysed for various conditions: controlling the temperature of the heating pads, in an open environment or with the presence of thermal shields, and in full power mode. A few examples of application of the apparatus to fire test typical construction materials (steel and glass) are also presented. These results emphasise the well-defined heating conditions in temperature-controlled mode. The study finally discusses the advantages and limitations of the apparatus, as well as many possibilities of future applications and improvement for future research studies.
Funding text :
The research performed at the Liège University was funded by AGC Glass Europe and a grant of Walloon Region—doctorat en entreprise project 0000015366. Dr Lucherini would also like to gratefully acknowledge the financial support for the FRISSBE project within the European Union’s Horizon 2020 research and innovation programme (GA 952395).
Scopus citations®
without self-citations
0