[en] This work provides a numerical framework for the accurate prediction of operational life of metallic components exhibiting a non-classical creep behavior under constant loadings and very high temperature. A modified Graham-Walles type analytical viscoplastic function is implemented into a Chaboche unified viscoplastic constitutive model. The numerical model is integrated into the finite element software Lagamine following a fully-implicit two-step radial return mapping algorithm. The non-linear system of equations is solved using a robust Newton-Raphson method. The computational efficiency of the model is enhanced by implementing a sub-step routine, thereby decreasing the average number of iterations of the finite element software. The validation of the model is performed using experimental data available in the literature on the non-classical creep behavior of Incoloy 800H, a Ni-superalloy exhibiting a two-step creep strain rate minima attributed to multiple complex dislocation-precipitate interactions.
Research Center/Unit :
MSM - Materials and Solid Mechanics team - ULiège[BE]
Tuninetti, Víctor; UFRO - University of La Frontera [CL] > Mechanical Engineering Department > Assistant Professor
Duchene, Laurent ; Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Language :
English
Title :
Implementation of a modified Graham-Walles viscosity function within a Chaboche viscoplastic constitutive model
Development of a generic MultiScale Creep-Fatigue approach, allowing finite element simulations to predict strains and fracture of metal components at high temperature- application on 800H alloy
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fund for Research Training in Industry and Agriculture WBI - Wallonia-Brussels International
Funding number :
FRIA 4000-8987; WBI/AGCID RI-02 (DIE-0001)
Funding text :
This work is funded by FNRS throughout the FRIA grant N° 4000-8987 and WBI/AGCID RI02 (DIE23-0001). As research director of F.R.S.-FNRS, A.M. Habraken thanks the Fund for Scientific Research for financial support.
Commentary :
This work was published as part of a special issue of CAMWA Journal, with motive of the 8th version of the International Conference of Advanced Computational Methods in Engineering (ACOMEN), held in Liège (BE) during August-September of 2022. The article presents the adaptation of a UVCM to enable the prediction of complex creep responses of Materials. We apply the model for the prediction of creep curves of Incoloy 800H found in literature. The simulations achieve good accuracy.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Nabarro de Villiers, F.R.N., The Physics of Creep. 1995, Taylor & Francis.
Sun, D., Huo, J., An, S., Experimental and numerical study of turbine blade fatigue based on a creep-fatigue prediction model. J. Eng. Mater. Technol., 144, 2022, 10.1115/1.4053617.
Sattar, M., Othman, A.R., Kamaruddin, S., Akhtar, M., Khan, R., Limitations on the computational analysis of creep failure models: a review. Eng. Fail. Anal., 134, 2022, 105968, 10.1016/j.engfailanal.2021.105968.
Huda, Z., Creep behavior of materials. Mechanical Behavior of Materials, 2022, Springer International Publishing, Cham, 253–265, 10.1007/978-3-030-84927-6_14.
Röesler, J., Harders, H., Beaker, M., Mechanical Behaviour of Engineering Materials. 2007, Springer.
Holdsworth, S.R., Constitutive equations for creep curves and predicting service life. Creep-Resistant Steels, 2008, Elsevier, 403–420, 10.1533/9781845694012.2.403.
Swindeman, R.W., Marriott, D.L., Criteria for design with structural materials in combined-cycle applications above 815 °F. J. Eng. Gas Turbines Power, 116, 1993, 11, 10.1115/1.2906827.
Swindeman, R.W., Swindeman, M.J., Ren, W., Can coverage of alloy 800H in ASME section III subsection NH be extended to 850 °C?. Volume 6: Materials and Fabrication, 2006, ASMEDC, Vancouver, BC, Canada, 521–528, 10.1115/PVP2006-ICPVT-11-93333.
Ren, W., Swindeman, R., A review on current status of alloys 617 and 230 for gen IV nuclear reactor internals and heat exchangers 1. J. Press. Vessel Technol., 131, 2009, 044002, 10.1115/1.3121522.
Ren, W., Swindeman, R., Status of alloy 800 H in considerations for the gen IV nuclear energy systems. J. Press. Vessel Technol., 136, 2014, 054001, 10.1115/1.4025093.
Guttmann, V., Bürgel, R., Creep–structural relationship in steel alloy 800 H at 900–1000 °C. Met. Sci. 17 (1983), 549–555, 10.1179/030634583790420475.
Degischer, H.P., Aigner, H., Lahodny, H., Spiradek, K., Qualification of stationary creep of the carbide precipitating alloy 800H. High Temperature Alloys, 1987, Springer, Dordrecht, 487–498.
Spiradek, K., Degischer, H.P., Lahodny, H., Correlation between microstructure and the creep behaviour at high temperature of alloy 800 H. Materials Science, 1989, International Atomic Energy Agency (IAEA), Vienna, Austria, 54–65.
Hatakeyama, T., Sawada, K., Sekido, K., Hara, T., Kimura, K., Influence of dynamic microstructural changes on the complex creep deformation behavior of 25Cr–20Ni–Nb–N steel at 873 K. Mater. Sci. Eng. A, 814, 2021, 141270, 10.1016/j.msea.2021.141270.
Hatakeyama, T., Sawada, K., Sekido, K., Hara, T., Kimura, K., Microstructural factors of the complex creep rate change in 18Cr–9Ni–3Cu–Nb–N steel. Mater. Sci. Eng. A, 831, 2022, 142225, 10.1016/j.msea.2021.142225.
Kang, G., Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application. Int. J. Fatigue 30 (2008), 1448–1472, 10.1016/j.ijfatigue.2007.10.002.
Zhang, T., Wang, X., Zhou, D., Wang, R., Jiang, Y., Zhang, X., Gong, J., Tu, S., A universal constitutive model for hybrid stress-strain controlled creep-fatigue deformation. Int. J. Mech. Sci., 225, 2022, 107369, 10.1016/j.ijmecsci.2022.107369.
Chaboche, J.L., A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24 (2008), 1642–1693, 10.1016/j.ijplas.2008.03.009.
Ohno, N., Recent topics in constitutive modeling of cyclic plasticity and viscoplasticity. Appl. Mech. Rev. 43 (1990), 283–295, 10.1115/1.3119155.
Kaushik Karthik, N., Investigations on the effects of alternating temperatures on the lfetime of P-type radiant tubes. PhD thesis, 2020, RWTH Aachen University.
Gardiner, B., High temperature creep performance of alloy 800H. PhD. Thesis, 2014, University of Canterbury.
Ahmed, R., Barrett, P.R., Hassan, T., Unified viscoplasticity modeling for isothermal low-cycle fatigue and fatigue-creep stress–strain responses of Haynes 230. Int. J. Solids Struct. 88–89 (2016), 131–145, 10.1016/j.ijsolstr.2016.03.012.
Ahmed, R., Hassan, T., Constitutive modeling for thermo-mechanical low-cycle fatigue-creep stress–strain responses of Haynes 230. Int. J. Solids Struct. 126–127 (2017), 122–139, 10.1016/j.ijsolstr.2017.07.031.
Ahmed, R., Barrett, P.R., Menon, M., Hassan, T., Thermo-mechanical low-cycle fatigue-creep of Haynes 230. Int. J. Solids Struct. 126–127 (2017), 90–104, 10.1016/j.ijsolstr.2017.07.033.
Morch, H., Thermomechanical modelling of the creep-fatigue behaviour and damage of Nickel-alloy receiver tubes used in Concentrated Solar Power plants. PhD. Thesis, 2022.
Markovich Kachanov, L., The Theory of Creep, National Leading Library for Science and Technology. 1967.
Incoloy alloy 800H & 800HT, Special Metals Corporation, 2004.
NAS 800H/800T (UNS N08810/N08811), (2011).
Hammond, J.P., Ratcliff, L.T., Brinkman, C.R., Moyer, M.W., Nestor, C.W. Jr., Dynamic and Static Measurements of Elastic Constants with Data on 2 1/4 Cr-1 Mo Steel, Types 304 and 316 Stainless Steels, and Alloy 800H. 1979, Oak Ridge Laboratory, Oak, Ridge, Tennessee, U.S.
Betaieb, E., Duchêne, L., Habraken, A.M., Calibration of kinematic hardening parameters on sheet metal with a computer numerical control machine. Int. J. Mat. Forming, 15, 2022, 69, 10.1007/s12289-022-01714-3.
K.F. Walles, A. Graham, The relationship between the creep and tensile properties at elevated temperature of Nimonic 80-II, National gas turbine establishment, Ohio, U.S, 1953.
Karthik, N.K., Schmitz, N., Pfeifer, H., Schwing, R., Linn, S., Kontermann, C., Oechsner, M., Einfluss von Temperaturwechselbeanspruchung auf das Verformungsverhalten von Ofenkomponenten und deren Lebensdauer. Berg Huettenmaenn Monatsh. 164 (2019), 364–371, 10.1007/s00501-019-0882-5.
Karthik, N.K., Schmitz, N., Pfeifer, H., Effect of cyclic thermal loading on the lifetime of furnace components. Heat Treatment & Surface Engineering for Automotive, Associazione Italiana di Metallurgia, Bardolino, Italy, 2019, 1–10.
N. Schmitz, N.K. Karthik, H. Pfeifer, J.G. Wuenning, Durability of metallic radiant tubes in galvanizing lines, Charleston, South Carolina, USA, 2019, p. 17.
Lemaitre, J., Chaboche, J.L., Phenomenological aspect of rupture by damage. J. Méc. Théor. Appl. 2 (1978), 317–365.
Morch, H., Duchêne, L., Harzallah, R., Tuninetti, V., Habraken, A.M., Efficient temperature dependence of parameters for thermo-mechanical finite element modeling of alloy 230. Eur. J. Mech. A, Solids, 85, 2021, 104116, 10.1016/j.euromechsol.2020.104116.
Frederick, C.O., Armstrong, P.J., A mathematical representation of the multiaxial Bauschinger effect. Mat. High Temp. 24 (2007), 1–26, 10.3184/096034007X207589.
Chaboche, J.L., Van, K.D., Cordier, G., Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. Materials Modeling and Inelastic Analysis of Metal Structures, IASMiRT, Berlin, Germany, 1979.
Chaboche, J.L., Rousselier, G., On the plastic and viscoplastic constitutive equations—part I: rules developed with internal variable concept. J. Press. Vessel Technol. 105 (1983), 153–158, 10.1115/1.3264257.
Wang, J.-D., Ohno, N., Two equivalent forms of nonlinear kinematic hardening: application to nonisothermal plasticity. Int. J. Plast. 7 (1991), 637–650, 10.1016/0749-6419(91)90048-4.
Yaguchi, M., Yamamoto, M., Ogata, T., A viscoplastic constitutive model for nickel-base superalloy, part 1: kinematic hardening rule of anisotropic dynamic recovery. Int. J. Plast. 18 (2002), 1083–1109, 10.1016/S0749-6419(01)00029-8.
Yaguchi, M., Yamamoto, M., Ogata, T., A viscoplastic constitutive model for nickel-base superalloy, part 2: modeling under anisothermal conditions. Int. J. Plast. 18 (2002), 1111–1131, 10.1016/S0749-6419(01)00030-4.
Barrett, P.R., Hassan, T., A unified constitutive model in simulating creep strains in addition to fatigue responses of Haynes 230. Int. J. Solids Struct. 185–186 (2020), 394–409, 10.1016/j.ijsolstr.2019.09.001.
Bartošák, M., Španiel, M., Doubrava, K., Unified viscoplasticity modelling for a SiMo 4.06 cast iron under isothermal low-cycle fatigue-creep and thermo-mechanical fatigue loading conditions. Int. J. Fatigue, 136, 2020, 105566, 10.1016/j.ijfatigue.2020.105566.
Bartošák, M., Constitutive modelling for isothermal low-cycle fatigue and fatigue-creep of a martensitic steel. Mech. Mater., 162, 2021, 104032, 10.1016/j.mechmat.2021.104032.
Krishna, S., Hassan, T., Ben Naceur, I., Saï, K., Cailletaud, G., Macro versus micro-scale constitutive models in simulating proportional and nonproportional cyclic and ratcheting responses of stainless steel 304. Int. J. Plast. 25 (2009), 1910–1949, 10.1016/j.ijplas.2008.12.009.
Aubin, V., Bulthé, A.-L., Degallaix, S., Quaegebeur, P., Ratcheting behavior of a duplex stainless steel: characterization and modeling. Proceedings of the Ninth International Conference on the Mechanical Behavior of Materials, 2003, 25–29.
Akhiani, H., Nezakat, M., Sanayei, M., Szpunar, J., The effect of thermo-mechanical processing on grain boundary character distribution in Incoloy 800H/HT. Mater. Sci. Eng. A 626 (2015), 51–60, 10.1016/j.msea.2014.12.046.
Hosseini, E., Holdsworth, S.R., Kühn, I., Mazza, E., Temperature dependent representation for Chaboche kinematic hardening model. Mat. High Temp. 32 (2015), 404–412, 10.1179/1878641314Y.0000000036.
Kleinpass, B., Lang, K.-H., Löhe, D., Macherauch, E., Thermal-mechanical fatigue behaviour of NiCr22Co12Mo9. Bressers, J., Rémy, L., Steen, M., Vallés, J.L., (eds.) Fatigue Under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling: Proceedings of the Symposium Held at Petten, the Netherlands, 22–24 May 1995, 1996, Springer, Netherlands, Dordrecht, 327–337, 10.1007/978-94-015-8636-8_35.
Ohno, N., Takahashi, Y., Kuwabara, K., Constitutive modeling of anisothermal cyclic plasticity of 304 stainless steel. J. Eng. Mater. Technol. 111 (1989), 106–114, 10.1115/1.3226424.
University of Liège, Lagamine FE code. http://www.lagamine.uliege.be/dokuwiki/doku.php/.
Drucker, D.C., Some implications of work hardening and ideal plasticity. Q. Appl. Math. 7 (1950), 411–418.
Morch, H., Yuan, S., Duchêne, L., Harzallah, R., Habraken, A.M., A review of higher order Newton type methods and the effect of numerical damping for the solution of an advanced coupled Lemaitre damage model. Finite Elem. Anal. Des., 209, 2022, 103801, 10.1016/j.finel.2022.103801.
Tachibana, K., Nishi, H., Eto, M., Muto, Y., Creep Characteristics of Alloy 800H. 1998, Japan http://inis.iaea.org/search/search.aspx?orig_q=RN:29043501.
Zhu, Y.Y., Cescotto, S., Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method. Comput. Methods Appl. Mech. Eng. 129 (1996), 177–209, 10.1016/0045-7825(95)00835-7.
Jardin, R.T., Tuninetti, V., Tchuindjang, J.T., Hashemi, N., Carrus, R., Mertens, A., Duchêne, L., Tran, H.S., Habraken, A.M., Sensitivity analysis in the modelling of a high speed steel thin-wall produced by directed energy deposition. Metals, 10, 2020, 10.3390/met10111554.
Riedlsperger, F., Krenmayr, B., Zuderstorfer, G., Fercher, B., Niederl, B., Schmid, J., Sonderegger, B., Application of an advanced mean-field dislocation creep model to P91 for calculation of creep curves and time-to-rupture diagrams. Materialia, 12, 2020, 100760, 10.1016/j.mtla.2020.100760.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.