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Abstract 

This work provides a numerical framework for the accurate prediction of operational life of 

metallic components exhibiting a non-classical creep behavior under constant loadings and very high 

temperature. A modified Graham-Walles type analytical viscoplastic function is implemented into a 

Chaboche unified viscoplastic constitutive model. The numerical model is integrated into the finite 

element software Lagamine following a fully-implicit two-step radial return mapping algorithm. The 

non-linear system of equations is solved using a robust Newton-Raphson method. The computational 

efficiency of the model is enhanced by implementing a sub-step routine, thereby decreasing the 

average number of iterations of the finite element software. The validation of the model is performed 

using experimental data available in the literature on the non-classical creep behavior of Incoloy 

800H, a Ni-superalloy exhibiting a two-step creep strain rate minima attributed to multiple complex 

dislocation-precipitate interactions.  
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1. Introduction 

Creep is the presence of an evolving permanent deformation experienced by materials under 

constant load at high temperature (usually above 0.5 times the melting point temperature)[1]. Creep 

mechanical response is different for any given material as it relies on its microstructural features. 

For many metallic materials, one can identify 3 creep stages:  a 1st stage, where the creep mechanism 

(i.e., vacancy diffusion or dislocation) is initiated; a 2nd stage, where the interaction between creep 

mechanisms with grain boundaries and precipitates result in a steady-state creep rate; and a final 3rd 

stage, where the effect of damage accumulation leads to the loss of load carrying capacity of the 

material. This type of behavior is hereafter referred to as “classical”. The three classical creep stages 

are presented in Fig. 1a. 

Accurate operational life prediction of critical metallic components undergoing high thermal 

loadings is today a subject of significant research and scientific interest [2,3]. Standard methods 

consisting in the analytical prediction of a chosen failure criterion (e.g., time-to 1% strain, buckling, 

time-to-tertiary creep, etc.) as function of material loadings (e.g., stress, temperature) are still 

popular [4]. However, the reliability of data extrapolation is limited to certain stress-temperature 

ranges, and factors such as material microstructural features and environmental conditions are often 

not addressed [5,6]. Modern engineering developments concerning high-efficient technologies entail 

materials withstanding very-high temperatures and/or complex thermal cycles, where creep-fatigue 

interaction, non-classical creep responses and environmental effects must be taken into account [7–

10]. Such is the case of Incoloy 800H, a Ni-superalloy developed during the 1950s with the aim of 

combining a good creep and corrosion resistance while achieving high cost efficiency [11]. Within 

temperatures beyond 760°C and stresses roughly below 50 [MPa], the creep behavior of this alloy is 

reported to exhibit a one or two-step creep strain rate minima. Experimental studies on 800H [12–

14] and similar austenitic Ni-Cr alloys [15,16] attribute the first minimum creep strain rate (mcr1 in 

Fig. 1b) to the pinning of dislocations produced by the precipitation of MC carbides. The subsequent 

creep strain rate increment is produced by the dissolution of these precipitates, inducing a dynamic 

recovery effect as dislocations are unpinned. The second minimum (mcr2) is only observed during 

long-term high-temperature creep tests at very-low stresses [12]. Based on macroscopic 

observations, the authors from [12] attributed this response to a nitridation-induced creep strain 

hardening produced by the precipitation of intragranular Cr and Al nitrides. Based on interrupted 

creep tests and metallurgic characterization, more recent studies conducted on similar austenitic Ni-

Cr alloys exhibiting a similar creep response [15,16] attribute the mcr2 to a grain boundary 
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precipitate strengthening (GBPS) phenomenon induced by massive intragranular precipitation of 

M23C6 carbides. This non-classical two-step minimum creep behavior alongside the possible creep 

micromechanical features involved in each stage are illustrated in Fig. 1b. 

 

 

Fig. 1: Graphical illustration of: (a) classical creep – creep strain rate curves with 3 creep stages, and 
(b) non-classical creep strain – creep strain rate curves exhibited by Incoloy 800H for low mechanical 
stress and high temperature loadings.   

 

The mechanical behavior of materials undergoing complex thermomechanical loadings is often 

studied via numerical simulations using the finite element (FE) method. In this context, the suitability 

of the constitutive law is key to achieve accurate predictions. Unified viscoplastic constitutive models 

(UVCMs) are preferred as they provide a numerically efficient and physically accurate representation 

of the plastic and viscous deformations as part of a single inelastic phenomenon[17,18]. Chaboche-

type UVCMs are highlighted in this field due to their high adaptability and accuracy in the prediction 

of creep-fatigue life of metallic components [19]. Conventional material models of this family 

describe ratcheting (plastic strain accumulation within cyclic loadings) and creep-fatigue 

interactions using complex backstress formulations [20]. In these laws, viscoplastic deformations are 

modeled using a single viscosity function [19]. Both backstress and viscosity functions are in essence 

intended to describe the creep hardening of the material until the steady state creep rate is reached 

(i.e., classical 1st and 2nd creep stages, see Fig. 1a) [19]. In addition, a continuum damage mechanics 

(CDM) approach enables the integrated computation and prediction of loss of load carrying capacity 

of the material (3rd creep stage). This is performed by considering a unitary damage variable D 

(0≤D<DFRAC) evolving as creep and creep-fatigue viscoplastic deformations increase. The material is 

considered fractured when a damage threshold DFRAC is reached. A well-identified model of such a 

kind provides a good approximation of the remaining operational life of the component [21]. 
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A conventional Chaboche UVCM was firstly applied to predict the creep response of 800H in air 

at 980°C and 14 [MPa] initial stress, where a two-step creep strain rate minima is observed [22]. This 

numerical model is based on the work of R. Ahmed et al. [23–25], and was implemented in FE 

software Lagamine by H. Morch [26] following a semi-coupled damage approach and a fully implicit 

integration scheme. Inelastic deformations are modeled via a single Norton viscosity function. The 

creep damage accumulation is predicted using a Kachanov creep damage model [27]. Material 

parameters were extracted from available datasheets [28,29] as well as literature on the subject [30]. 

Constitutive law parameters (Norton viscosity function and damage) were identified using an in-

house developed Python-based optimization software [31]. The model parameters as well as the 

viscoplastic and damage equations for the model are provided in Appendix A. The true creep strain 

calculated using this conventional UVCM is presented in blue in Fig. 2. The results evidence that 

conventional single-hardening power-law viscoplastic formulations are unsuitable for non-classical 

creep behavior (see Fig. 1b). The predicted creep strain does not develop into the continuous creep 

hardening and softening phenomena observed beyond the stagnation of the Norton viscoplastic law. 

Moreover, the negligible effect of creep damage accumulation (red curve in Fig. 2) on the predicted 

true creep strain curve highlights the need for a new viscosity function and/or CDM formulation.  

 

 

Fig. 2: True creep strain and damage accumulation predicted by a conventional Chaboche UVCM 
applied to non-classical creep behavior of 800H alloy. 
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With the objective of modeling the complex creep behavior of Fig. 1b, a modified Graham-Walles 

(mGW) type viscosity function is chosen. Initially developed as an analytical creep model [32], the 

Graham-Walles approach is formulated as a summation of non-linear functions, where the creep rate 

of the material is calculated as a function depending on the creep strain, temperature, and effective 

stress. Each function represents a different viscous phenomenon such as creep hardening or 

softening. The summation of these functions depicts a viscous behavior ruled by different creep 

mechanisms and/or creep stages at various moments. In addition, the chosen mGW-type CDM 

approach addressing creep and creep-fatigue interaction damage evolution is implemented. Both 

viscous and damage mGW-type functions used in Section 2 were originally developed in TU 

Darmstadt in cooperation with Aachen University. Operating together, these scientists have 

demonstrated the high reliability and accuracy of the viscosity function in the prediction of 

operational life of alloy 602 components subjected to low and high frequency cyclic thermal loadings 

[21,33–36].  

The mathematical formulation of the UVCM presented in Section 2 emphasizes the proposed 

mGW viscoplastic features addressing complex viscoplastic behavior, creep-fatigue interaction, and 

coupled damage evolution. The fully-implicit FE implementation of the model is explained in detail 

in Section 3. Results of the application of the viscoplastic model for creep strain and creep life 

prediction of 800H alloy within non-classical creep regimes are presented in Section 4.  

Computational efficiency and overall numerical convergence of the model are also ascertained 

within. Finally, conclusions and future prospects on the research are summarized in Section 5.  

All the numerical results presented hereafter deal with uniaxial cases. However, tensorial 

implementation was performed and checked by multiple multiaxial FE simulations not reproduced 

here for shortness [26]. 

2. UVCM formulation 

The numerical modeling of the mechanical behavior of materials defines a scalar yield surface 

function Φ representing the current state of the material within the stress space. Mechanical loadings 

found within the elastic domain will give Φ values smaller than 0, whereas those found within the 

viscoplastic domain will result in the evolution of the yield surface towards Φ=0. The function 

describing the yield surface of the UVCM is the von Mises yield criterion. The von Mises equivalent 

stress is calculated by solving the J2-type function given in (1), where the material yielding is linked 

to the second stress tensor invariants. 
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In (1), �̃� is the effective stress tensor, �̃� is the deviatoric form of the effective stress tensor, and X 

is the backstress tensor. Following the hypothesis of strain equivalency [37], the relationship 

between the Cauchy stress tensor 𝛔 and its effective counterpart is given by �̃� = (1 − 𝐷)−1𝛔, where 

D is a state variable indicating the local unitary damage (0≤D<1). This CDM approach is chosen 

because of its reliability and accurate physical representation of the loss of load carrying capacity of 

the material it provides. 

The deviatoric-effective stress tensor is calculated by: 

�̃� = �̃� −
1

3
𝑡𝑟(�̃�)𝐈 (2) 

where I is the 2nd order identity tensor. 

The function Φ defining the yield criterion is presented in (3), 

Φ = 𝐽2(�̃� − 𝐗) − 𝜎𝑦 ≤ 0 (3) 

where σy is the current yield stress of the material. The evolution of σy is ruled by the Voce 

isotropic hardening law. The formulation of which is given by σy=σ0+R(p), where σ0 is the initial yield 

stress of the material, and R(p) is the hardening function, expressed in its variational form in (4), 

�̇� = −B(Q − 𝑅)�̇� (4) 

where Q is the hardening saturation value, B is the hardening saturation rate, and �̇� is the equivalent 

inelastic strain rate. 

Following the Chaboche-type UVCM formulation [19], the total backstress tensor X is calculated 

as the sum of the contribution of multiple Armstrong-Frederick (AF)-type backstress equations Xi, 

where i=1,nAF. The general form of the singular backstress tensorial equation in its variational form 

is provided hereafter: 

�̇� = ∑ [
2

3
C𝑖�̇�

𝑝 − γ𝑖(�̇�𝑖 − �̇�𝑖)�̇� − b𝑖𝐽2(𝐗𝑖)
(r𝑖−1)𝐗𝑖 +

1

C𝑖
(𝜕𝑇𝐶𝑖)�̇�𝐗𝑖]

𝑛𝐴𝐹

𝑖=1

 (5) 

where �̇�𝑖 is a static-recovery function, �̇�𝑖 is the ith contribution to the AF backstress tensor,  �̇�𝑝 is the 

inelastic strain rate tensor, T is the temperature, �̇� is the temperature rate, and Ci, γi, bi and ri are 

material parameters. 

𝐽2(�̃� − 𝐗) = [
3

2
(�̃� − 𝐗): (�̃� − 𝐗)]

1
2

 (1) 
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Each term i in (5) models a plastic event related to a different mechanism (short- or long-term 

hardening, for instance due to microstructure evolution). This allows for modeling complex 

mechanical responses present within cyclic thermomechanical loadings [23,24,38]. For each term i, 

phenomena such as dynamic recovery [39], static recovery [40,41], and non-isothermal plasticity 

[42] are addressed within different parts of the equation. Following the developments of Yaguchi et 

al. [43,44], rectification of the mean stress of the material as consequence of static-recovery effects 

is introduced within the static recovery term �̇�. Based on this approach, accurate predictions of the 

number of cycles before rupture have been reported for Ni [25,38,45] and steels [46,47] alloys. 

Furthermore, a strain-memory surface function [40,48] within the parameter γi entailed to the 

second dynamic recovery term in (5) is introduced in order to accurately predict unconventional 

ratcheting regimes (i.e., non-Masing behavior) observed in austenitic alloys [24,25,49] undergoing 

non-proportional stress and strain controlled cyclic loadings. Although not addressed within our case 

study (creep strain prediction at constant thermomechanical loadings), all these features are 

included for the sake of possible future applications enhancing the capabilities of the constitutive 

law. Detailed mathematical description and application of the features described hereabove can be 

found in the works of Ahmed et al. [24,25] and Morch et al. [38]. 

In order to enable the UVCM to predict non-classical viscoplastic deformations, a mGW-type 

viscosity function is used. The evolution of the equivalent inelastic strain rate �̇� is modeled as a 

summation of terms explicitly dependent on �̃�, X, p, D and T, whereas the time t remains an implicit 

variable. The mGW-type viscosity function is presented in its rate form in (6): 

 

�̇� = ∑ [K𝑗 exp(
𝑇

Cq𝑗
) 𝐽2(�̃� − 𝐗)

n𝑗𝑝m𝑗]

𝑛𝑉𝑃

𝑗=1

+ KT|�̇�|𝐽2(�̃� − 𝐗)𝑝
mT (6) 

where Kj, nj, mj, Cqj, KT and mT are material constants to be identified. Inelastic deformations related 

to static thermal loadings (i.e., �̇� = 0) are entailed to the summation of terms j=1:nVP, whereas those 

related to the presence of temperature gradients (i.e., �̇� ≠ 0) are computed with the last term 

(subindex T). The total equivalent inelastic strain is calculated as the summation of nVP+1 

independent functions, each one associated with a different hardening or softening phenomenon. 

The adaptability of this formulation for the prediction of a non-classical creep behavior is 

represented in Fig. 3, where a total of 3 functions are analytically fitted onto an experimental �̇� − 𝑝 

creep curve exhibited by Incoloy 800H at 1000°C and an initial stress of 35 [MPa]. 
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Fig. 3: Analytical fit of experimental non-classical Incoloy 800H creep curve at 1000°C and 35 

[MPa] using 3 mGW viscosity functions j. 

 

The implemented coupled damage formulation follows a mGW-type formulation approach, 

where the total damage increment is calculated as the sum of two phenomenological functions 

representing the creep and the creep-fatigue contributions. This damage formulation, developed in 

Darmstadt TU, has reported successful results for prediction of damage accumulation in Ni-alloy 602 

[21,33,35]. The function is presented in its rate form in (7): 

�̇� = KD𝐽(�̃� − 𝐗) + KTD|�̇�|𝑝
mTD  (7) 

where KD, KTD and mTD are material parameters. In (7), the first term with subindex D is entitled to 

the creep damage equation, whereas the second term intended for computation of creep-fatigue 

interaction damage contribution is identified by subindex TD. 

2.1.Parametric dependency to temperature 

Materials submitted to high thermal loads often exhibit reversible and permanent changes in 

their mechanical properties due to the evolution of their microstructure [14,50,51]. Changes of the 

reversible type are phenomenologically addressed within this UVCM by introducing parametric 

dependency to the temperature on certain user-defined material parameters. A total of 5 approaches 

are implemented and left as a user-choice within the software: constant (no explicit temperature 

dependency), single exponential equation (8), double exponential equation (9), 3rd-degree 

polynomial (10) and Logarithmic (11) equations. Studies conducted on Hastelloy A230 by Morch et 

al.[38] show that inter- and extrapolated data obtained using single and double exponential 

approaches provide high reliability, numerical efficiency and robustness. The use of single 

exponential equations was preferred due to their high adaptability in [52], whereas double 
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exponential dependency proved more suitable for describing the parametric evolution of hardening 

material parameters [38]. The parametric equations are described in detail in Table 1. 

 

Table 1: Summary of functions defining the parametric dependency to temperature of material 
parameters implemented within the UVCM. Ai are user-defined constants.  
*: absolute temperature (K). 

 

 

As observed experimentally in other Ni-alloys [25,53], the maximum temperature reached during 

thermo-mechanical fatigue (TMF) loadings entails permanent changes in the material 

microstructure. Following the pioneering developments of [53,54], Ahmed et al.[24] introduced 

permanent changes in material parameters as function of the maximum temperature in the thermal 

history (Tmax). The parameters affected are mainly the elastic modulus E and the parameter 

controlling the rate of evolution of the strain memory surface (see [24,40,48]). Detailed physical and 

mathematical background of these approaches can be found in [24,53,54]. 

3. Integration algorithm 

The constitutive law presented hereabove was implemented in the FE software Lagamine, a 

ULiège FE code developed since the 1980s [55]. A two-level algorithm operating at each integration 

point of the FE mesh is executed for each time step to compute the local state variables of the material. 

Let us consider the current (n+1)th time step designated as tn+1, where the actual time increment is 

given by Δtn+1 = tn+1 - tn.  The global level aims to compute the nodal forces and kinematic variables. 

This is performed by executing a main Newton-Raphson algorithm formed from a 1-level Taylor 

expansion of the equation describing the discrete equilibrium condition. Convergence in this main 

level is achieved when the out-of-balance forces and out-of-balance kinematic variables are found 

below the user-defined maximum admissible error. In case convergence is not reached after a 

Type of equation Equation 

Single Arrhenius equation 
[52] 

P(𝑇) = A1 [1 − A2 exp (
𝑇

A3
)] (8) 

Double Arrhenius equation 
[38] 

P(𝑇) = A1 {[1 − A2 exp (
𝑇

A3
)] + [1 − A4 exp (

𝑇

A5
)]} (9) 

3-degree polynomial [30] P(𝑇) = A1[1 + A2(𝑇 − A5) + A3(𝑇 − A5)
2 + A4(𝑇 − A5)

3] (10) 

Logarithmic* P(𝑇) = A1 [1 + A2 ln (
𝑇

A3
)] (11) 
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maximum of user-defined global iterations, the time increment for the step is reduced. This occurs 

consecutively until either convergence or a minimum time increment is reached. If no convergence 

is achieved after a minimum time increment is reached, the algorithm stops. 

The local level of this algorithm operates within the constitutive law integration of the material. 

It aims to compute the local material compliance matrix and stress tensor in the current (n+1) 

configuration (ℂ𝑛+1 and σn+1), which are function of the local state variables of the material. For 

calculating these last ones, the local state variables of the material in the reference (nth) configuration 

and the current global level guess of DOF values at the current time increment Δtn+1 (i.e., temperature 

increment ΔTn+1 and the strain increment Δϵn+1) are taken into consideration. Extending the work of 

Ahmed et al.[23,24] and Morch et al.[38] towards a fully coupled damage formulation of an UVCM, 

the integration algorithm described hereafter consists in the execution of the elastic predictor and 

coupled viscoplastic-damage corrector method: a two-step algorithm. The 1st step (elastic predictor), 

explained in detail in Section 3.1, works on the hypothesis of a fully elastic material. If the elastic 

behavior is verified, all state variables are updated accordingly. Otherwise, the material behavior is 

confirmed as viscoplastic. In such case, the 2nd step (viscoplastic-damage corrector) of the algorithm 

must be executed. Henceforth referred to as viscoplastic-damage loop, this second step is described 

in Section 3.2.  

 

3.1.Elastic trial 

Neglecting any inelastic strain or damage increments, the elastic contribution of the strain tensor 

in the step (i.e., elastic predictor) is calculated by subtracting the thermal strain tensor from the total 

strain tensor, i.e.: Δ𝛜𝑛+1
𝑒 = Δ𝛜𝑛+1 − Δ𝛜𝑛+1

𝑡ℎ . A trial stress in the current configuration is later 

computed as 𝛔𝑛+1
𝑇𝑅𝐼𝐴𝐿 = 𝛔𝑛 + Δ𝛔𝑛+1

𝑇𝑅𝐼𝐴𝐿. The stress variation in the step is calculated using the Hooke’s 

law while acknowledging thermal effects: 

Δ𝛔𝑛+1
𝑇𝑅𝐼𝐴𝐿 = Δℂ𝑛+1

𝑒 𝛜𝑛+1
𝑒 + ℂ𝑛+1

𝑒 Δ𝛜𝑛+1
𝑒 = (

𝑑ℂ𝑒

𝑑𝑇
Δ𝑇)

𝑛+1

𝛜𝑛+1
𝑒 + ℂ𝑛+1

𝑒 Δ𝛜𝑛+1
𝑒  (12) 

where ℂ𝑒 is the elastic compliance matrix. 

Based on the trial stress tensor, a trial backstress 𝐗𝑛+1
𝑇𝑅𝐼𝐴𝐿 under the premise of possible non-zero 

backstress components and possible temperature gradients affecting the static recovery and its 

temperature rate terms is also calculated. Neglecting any effects of inelastic strain and damage 

increment, the discretization of the ith extended A-F kinematic hardening equation on the time-step 

is: 
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𝐗𝑖𝑛+1
𝑇𝑅𝐼𝐴𝐿 − 𝐗𝑖𝑛
Δ𝑡𝑛+1

= −b𝑖𝐽2(𝐗𝑖𝑛+1
𝑇𝑅𝐼𝐴𝐿)

(r𝑖−1)
𝐗𝑖𝑛+1
𝑇𝑅𝐼𝐴𝐿 +

1

𝐶𝑖
(𝜕𝑇𝐶𝑖)𝑛+1�̇�𝑛+1𝐗𝑖𝑛+1

𝑇𝑅𝐼𝐴𝐿 (13) 

 

In order to solve (13) for 𝐗𝑖𝑛+1
𝑇𝑅𝐼𝐴𝐿, acknowledging its non-linearity, a brief local Newton-Raphson 

(NR) algorithm is implemented. For this purpose, the trial backstress tensor (𝐗𝑖𝑛+1
𝑇𝑅𝐼𝐴𝐿) is expressed 

as a function of its reference state counterpart (𝐗𝑖𝑛): 

𝐗𝑖𝑛+1
𝑇𝑅𝐼𝐴𝐿 = [

1

1 + b𝑖Δ𝑡𝑛+1𝐽2(𝐗𝑖𝑛+1
𝑇𝑅𝐼𝐴𝐿) (r𝑖−1) −

1
𝐶𝑖
(𝜕𝑇𝐶𝑖)𝑛+1Δ𝑇𝑛+1

]𝐗𝑖𝑛 = 𝜔𝑖𝑛+1𝐗𝑖𝑛 (14) 

 

The local NR algorithm is formulated by calculating the J2 modules of (14), from which a local 

residual function ℱ𝑔𝑖
= 𝐽2(𝐗𝑖𝑛+1

𝑇𝑅𝐼𝐴𝐿) − 𝐽2(𝐗𝑖𝑛)𝜔𝑖𝑛+1 = 0 is formed. The final form of the local NR 

algorithm in the (k+1)th iteration is given in Eq.(15). The algorithm iterates until a user-defined 

maximum admissible error ξℱ  is reached (i.e., ℱ𝑔𝑖
≤ ξℱ). 

 

𝐽2(𝐗𝑖𝑛+1
𝑇𝑅𝐼𝐴𝐿)

𝑘+1
= 𝐽2(𝐗𝑖𝑛+1)𝑘

−
ℱ𝑔𝑖

𝜕𝐽2(𝐗𝑖𝑛+1)
ℱ𝑔𝑖
|

𝑘

 (15) 

 

The purely-elastic behavior hypothesis is then verified by computing the yield function (3) using 

the trial stress and backstress tensors. The hypothesis is confirmed if the magnitude of the yield 

function is found to be lower or equal to zero, i.e., 𝑓𝑦 ≤ 0. In such case, all the state variables of the 

material are updated consequently: stress tensor 𝛔𝑛+1 = 𝛔𝑛+1
𝑇𝑅𝐼𝐴𝐿, backstress tensor 𝐗𝑛+1 = ∑𝐗𝑖𝑛+1

𝑇𝑅𝐼𝐴𝐿, 

total strain tensor 𝛜𝑛+1 = 𝛜𝑛 + Δ𝛜𝑛+1
𝑒 , equivalent inelastic strain 𝑝𝑛+1 = 𝑝𝑛 and damage 𝐷𝑛+1 = 𝐷𝑛. 

Otherwise (i.e., Φ>0), the material mechanical response is found within a viscoplastic-damage 

regime; the elastic hypothesis is discarded, and a viscoplastic-damage loop must be executed in order 

to calculate the state variables. 
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3.2.Viscoplastic-damage loop 

In this second step, an iterative elastic predictor – plastic corrector method known as the radial 

return mapping algorithm is executed. The algorithm iterates on the basis of the plastic flow rule 

[56,57]. The normal vector defining the plastic flow direction is given by (16).  

𝐧x = 𝜕�̃�𝐽2(�̃� − 𝐗) =
3

2

�̃� − 𝐗

𝐽2(�̃� − 𝐗)
 (16) 

 

The effective normal vector is defined as 𝐧 = (1 − 𝐷)−1𝐧x. The flow rule can thus be expressed 

in terms of both normal 𝐧x and effective normal 𝐧 vectors as seen in (17). 

Δ𝛜𝑝 = Δ𝑝𝐧 = (1 − 𝐷)−1Δ𝑝𝐧x (17) 

 

The unknown variables of the material in the incremental configuration (n+1) are grouped into 

a vector Δ𝓦 : 

 

Δ𝓦 = [Δ𝛜𝑒 Δ𝑝 Δ𝛔 Δ𝐗𝑖 Δ𝐷]T (18) 

 

The discretized functions describing the evolution of the variables within the vector Δ𝓦 are 

summarized in Table 2. 

 

Table 2: Summary of unknown variable increments within the viscoplastic-damage loop and 
equations defining their evolution. 

Unknown 
increment 

Equations 

Δ𝛜𝑒(Δ𝑝, 𝛔, 𝐗, 𝐷)  Δ𝛜𝑒 = Δ𝛜 − Δ𝛜𝑡ℎ − Δ𝑝𝐧 (19) 

Δ𝑝(𝑝, 𝛔, 𝐗, 𝐷) Δ𝑝 = {∑ [K𝑗 exp (
𝑇

Cq𝑗
) 𝐽2(�̃� − 𝐗)

n𝑗𝑝m𝑗]

𝑛𝑉𝑃

𝑗=1

+ KT|�̇�|𝐽2(�̃� − 𝐗)𝑝
mT}Δ𝑡 (20) 

Δ𝛔(Δ𝛜𝑒 , 𝐷) Δ�̃� = ℂ𝑒Δ𝛜𝑒 (21) 

Δ𝐗𝑖(Δ𝑝, 𝛔, 𝐗, 𝐷) Δ𝐗𝑖 =
2

3
C𝑖Δ𝑝𝐧 − γ𝑖(𝐗𝑖 − 𝐘𝑖)Δ𝑝 − b𝑖𝐽2(𝐗𝑖)

(r𝑖−1)𝐗𝑖Δ𝑡 +
1

𝐶𝑖
(𝜕𝑇𝐶𝑖)Δ𝑇𝐗𝑖 (22) 

Δ𝐷(𝑝, 𝛔, 𝐗, 𝐷) Δ𝐷 = KD𝐽2(�̃� − 𝐗)Δ𝑡 + KTD|Δ𝑇|𝑝
mTD  (23) 
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The non-linearity of the system and the strong dependence between the functions presented in 

Table 2 evidence the need for an adequate numerical method capable of reaching a solution while 

preserving computational efficiency. Within this framework, a thorough study on the speed, 

robustness and computational efficiency of different order NR approaches was conducted by Morch 

et al.[58]. It was concluded that the classic 1-step NR method provides the highest average speed and 

robustness, and is therefore used in this work.  

A local residual vector 𝐑𝑙𝑜𝑐(Δ𝓦) is formed based on the functions defining the evolution of the 

unknown variables: 

 

𝐑𝑙𝑜𝑐(Δ𝓦) =

{
 
 
 
 

 
 
 
 

Δ𝛜e + Δ𝛜𝑡ℎ − Δ𝛜 + Δ𝑝𝐧

Δ𝑝 − {∑ [K𝑗 exp(
𝑇

CT𝑗
) 𝐽2(�̃� − 𝐗)

n𝑗𝑝m𝑗]

𝑛𝑉𝑃

𝑗=1

+ KT|�̇�|𝐽2(�̃� − 𝐗)𝑝
mT}Δ𝑡

Δ𝛜𝑒 − 𝑖𝑛𝑣(ℂ𝑒)�̃�

Δ𝐗𝑖 −
2

3
C𝑖Δ𝑝𝐧 + γ𝑖(𝐗𝑖 − 𝐘𝑖)Δ𝑝 + b𝑖𝐽2(𝐗𝑖)

(r𝑖−1)𝐗𝑖Δ𝑡 −
1

𝐶𝑖
(𝜕𝑇𝐶𝑖)Δ𝑇𝐗𝑖

Δ𝐷 − KD𝐽2(�̃� − 𝐗)Δ𝑡 − KTD|Δ𝑇|𝑝
mTD }

 
 
 
 

 
 
 
 

 (24) 

 

 

The final form of the NR algorithm is: 

 

Δ𝓦𝑛+1
𝑘+1 = Δ𝓦𝑛+1

𝑘 − 𝑖𝑛𝑣(𝒥[𝐑𝑙𝑜𝑐(Δ𝓦)]𝑛+1
𝑘 )𝐑𝑙𝑜𝑐(Δ𝓦)𝑛+1

𝑘  (25) 

where 𝒥[𝐑𝑙𝑜𝑐(Δ𝓦)]𝑛+1
𝑘  is the Jacobian matrix of the local residuals vector with respect to the vector 

of variables (18). The form of the Jacobian matrix in conjunction with all partial derivatives 

concerning the algorithm are shown in detail in Appendix A.  

The initial guess of this radial return mapping algorithm Δ𝓦𝑛+1
1  contains the variables describing 

the overestimated yield surface Φ>0 calculated within the previous elastic trial. As such, initial guess 

for stress and backstress increments are defined as Δ𝛔𝑛+1
𝑇𝑅𝐼𝐴𝐿 and Δ𝐗𝑖𝑛+1

𝑇𝑅𝐼𝐴𝐿 respectively. However, 

given the direct mathematical relationship exhibited by the equations describing the evolution of p 

(20) and D (23), different initial guess variables are introduced for Δ𝛜𝑛+1
𝑒 , Δ𝑝𝑛+1 and Δ𝐷𝑛+1 according 

to the material behavior exhibited in the previous step. In case no inelastic deformations are detected 

within the previous step, Δ𝛜𝑛+1
𝑒  is considered equivalent to the total mechanical strain, whereas a 

small initial value of 10-3 is introduced in Δp and ΔD in order to impose possible inelastic 
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deformations and damage accumulation. Otherwise, Δ𝛜𝑛+1
𝑒 = 𝟎6×6,  Δ𝑝 = Δ𝑝𝑛 and Δ𝐷 = Δ𝐷𝑛. These 

conditions are expressed in (26). 

 

Δ𝓦𝑛+1
1 = {

[(Δ𝛜 − Δ𝛜𝑡ℎ)
𝑛+1

; 10−3 ; Δ𝛔𝑛+1
𝑇𝑅𝐼𝐴𝐿 ; Δ𝐗𝑖𝑛+1

𝑇𝑅𝐼𝐴𝐿 ; 10−3]
T
    𝑖𝑓 Δ𝑝𝑛 = 0

 

[𝟎6×6 ; Δ𝑝𝑛 ; Δ𝛔𝑛+1
𝑇𝑅𝐼𝐴𝐿 ; Δ𝐗𝑖𝑛+1

𝑇𝑅𝐼𝐴𝐿 ; Δ𝐷𝑛]
T
                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (26) 

 

In order to preserve computational efficiency, the calculation of the inverse of the Jacobian matrix 

from (25) is avoided. Instead, a new linear system formed on the basis of (25) by 

𝑖𝑛𝑣(𝒥[𝐑𝑙𝑜𝑐(Δ𝓦)]𝑛+1
𝑘 )𝐑𝑙𝑜𝑐(Δ𝓦)𝑛+1

𝑘 = 𝐀𝑛+1
𝑘+1  is solved at each NR iteration by means of an LU-

decomposition.  This approach has demonstrated to increase the overall computational efficiency of 

the subroutine while maintaining high accuracy and robustness. This new local system of equations 

is: 

 

𝐑𝑙𝑜𝑐(Δ𝓦)𝑛+1
𝑘 = −𝒥[𝐑𝑙𝑜𝑐(Δ𝓦)]𝑛+1

𝑘 𝐀𝑛+1
𝑘  (27) 

 

Convergence for the (k+1)th NR iteration is achieved when the norm of the magnitude of the local 

residual vector [𝐑𝑙𝑜𝑐(Δ𝓦)𝑛+1
𝑘+1: 𝐑𝑙𝑜𝑐(Δ𝓦)𝑛+1

𝑘+1]
0.5

 is lower or equal than the maximum admissible 

error of ξRloc  defined by the user. In such case, the variables in the (n+1)th iteration are updated on 

the basis of the incremental values calculated as Δ𝓦𝑛+1
𝑘+1. 

Divergence within this NR algorithm is confirmed if the norm of local residual vector is larger 

than the maximum admissible error after a maximum of user-defined kmax NR iterations is reached, 

or if values with no physical meaning appear within the variables (e.g., Δ𝑝 < 0 or Δ�̇� < 0). In case of 

divergence, the default algorithm (consisting in the reduction of the global time-step Δtn+1 and 

recalculation of the initial guess DOF) is firstly avoided by means of the activation of a local sub-step 

algorithm working within the constitutive law level. The current guess of the DOF kinematic variable 

vector is consequently subdivided by the total number of sub-steps (Nss) introduced by the user, and 

it linearly increases based on the sub-step counter u. This approach is intended to preserve 

computational efficiency during large complex simulations, where a global decrement of the time 

increment on the step would result in larger computational times. The condition expressed in (26) 

extends to this sub-step algorithm, and is executed at the beginning of each sub-step accordingly. A 
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brief flowchart summarizing the constitutive law integration scheme performed at each time step is 

presented in Fig. 4.  

 

 

Fig. 4: Flowchart describing the integration algorithm of the constitutive law.  
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4. Results and discussion 

In this section, results obtained from FE simulations executed using the UVCM implemented into 

Lagamine FE software are presented and analyzed. Section 4.1 addresses the validation of the 

viscosity function chosen to predict the non-classical viscous behavior of Incoloy 800H. The 

numerical convergence and computational efficiency of the model is later ascertained in Section 4.2. 

4.1.Case study validation 

The choice made for this modified Chaboche-type UVCM is hereafter checked within the context 

of our case study: an accurate prediction of non-classical viscoplastic behavior of 800H alloy under 

very high thermal and low mechanical loadings. Given the focus of this study, constitutive law 

features related to cyclic thermomechanical loadings (such as kinematic hardening, mean stress 

evolution, strain memory surface, creep-fatigue interaction, and thermal gradient dependent 

features) will not be taken into consideration. In addition, calculation of isotropic hardening is 

omitted due to its reported negligible effect in similar Austenitic Ni-Cr alloys as viscous deformations 

occur during static loadings and below the yielding point of the material [23,24]. 

A total of four experimental true creep strain rate (s-1) v/s true creep strain curves extracted from 

available scientific literature are addressed for the purpose of this study: two curves from uniaxial 

creep (constant axial load) tests conducted by (Guttmann & Bürgel, 1983)[12] and two curves from 

uniaxial relaxation (constant axial stress) tests conducted by (K. Tachibana et al., 1998)[59]. A 

detailed summary of the experimental dataset used for this study is given in Table 3. 

 

Table 3: Key features of tests used for identification and validation of the modified Chaboche-type 
UVCM. 

 

Currently the calculation of the coupled damage accumulation is left out of the scope of this study 

due to the lack of data on the subject provided within the available experimental data summarized in 

Table 3. Consequently, only material parameters and mGW viscosity function for inelastic strains 

prediction at constant temperature (i.e., subindex j in (6)) are considered. 

Test description Tag Temperature Stress  Reference 

Uniaxial creep tests  

(Guttmann & Bürgel, 1983) 

GB-1 1000 °C 11 [MPa] [12] 

GB-2 1000 °C 35 [MPa] [12] 

Uniaxial relaxation tests 

(K. Tachibana et al., 1998) 

KT-1 950°C 45 [MPa] [59] 

KT-2 900°C 35 [MPa] [59] 
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Material parameters are introduced within the constitutive law following the parametric 

temperature dependency approach summarized in Table 1. More specifically, the elastic modulus 

(E) and Poisson’s ratio (ν) are introduced as 3rd degree polynomials (10). A summary of the 

parameters and their correspondent standard deviation is provided  in [30]. 

Optimal parameters for each mGW-type viscosity function are found following a direct analytical 

identification procedure seeking to minimize the standard deviation calculated between 

experimental and analytical curves. Following the “1 equation per phenomenon” logic previously 

expressed in Fig. 3, the total number nVP of mGW equations (i.e., equations j=1, nVP in (6)) is 

determined by the number of viscous phenomena existing within the experimental curves.  

Initial diffusional-driven and dislocation-driven viscous deformations are observed across all 

experimental curves. This is directly followed by a tertiary creep stage in experimental datasets GB-

1, KT-1, and KT-2, thus leaving the total number of mGW equations in nVP=3 for these datasets. In 

the case of GB-1, the tertiary creep stage is preceded by a nitridation-induced hardening 

phenomenon, thus leaving the total number of mGW equations in nVP=4.  

Even though both literature sources deal with the same material, the undisclosed microstructural 

uncertainties inherent as both come from different batches can greatly affect the further viscous 

behavior of the alloy.[22] Given the fact that such uncertainties fall out of the scope of this study, and 

in order to better assess numerical capabilities of the UVCM, each experimental source (GB and KT) 

is dealt with as coming from different materials. Two analytical identification procedures are 

performed separately per literature source, and two different sets of parameters are consequently 

identified. 

The composition of each mGW-type viscosity function as the sum of nVP equations f is described 

in Table 4, where each alphabetic sub-index indicates a different equation and phenomenon. 

 

Table 4: Description of mGW viscous function used per each dataset curve  

Viscous function Equations (j=1,nVP) Summation in formula 

Dataset curve 1 2 3 4 j=1,nVP 

GB-1 𝑓𝐴 𝑓B 𝑓C 𝑓D �̇� = 𝑓𝐴 + 𝑓B + 𝑓C + 𝑓D 

GB-2 𝑓A 𝑓B 𝑓E  �̇� = 𝑓A + 𝑓B + 𝑓E 

KT-1 and KT-2 𝑓F 𝑓G 𝑓H  �̇� = 𝑓F + 𝑓G + 𝑓H 
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As seen in Table 4, a total of 3 sets of parameters (2 possibilities for GB data set and 1 single data 

set for Tachibana case) and 8 different equations were identified. A summary of the analytically 

identified parameters for all 8 equations is presented in Table 5. 

 

Table 5: mGW viscosity law equation parameters identified analytically for describing the non-
classical viscous behavior of Incoloy 800H undergoing very high-temperature and low-stress creep 
and relaxation tests. 

Equation Phenomenon K Cq m n 

𝑓A Diffusional-driven 2.00E − 20 −20.88 5.01 −10.20 

𝑓B Dislocation-driven 1.00E − 19 50.00 3.71 0.60 

𝑓C Nitridation + 
tertiary creep 

−2.80E − 14 50.00 0.02 2.48 

𝑓D 1.00E − 02 50.00 0.03 9.80 

𝑓E Tertiary creep 1.00E − 02 50.00 2.00 29.55 

𝑓F Diffusional-driven 1.02E − 30 −116.00 0.20 −1.33 

𝑓G Dislocation-driven 1.73E − 33 15.04 0.20 0.32 

𝑓H Tertiary creep 1.00E − 17 15.04 0.20 36.00 

 

 

Given the nearly uniaxial stress state exhibited by smooth bar samples used during the literature 

experiments, the material is modeled into the FE software Lagamine [55] as a single tridimensional 

element of the type BWD3T [60,61]. This hexahedral element type considers 8 nodes, 4 DOF per node 

(orthogonal spatial coordinates and temperature) and a single point of integration. A sketch 

describing the boundary conditions imposed in this simplified material model is presented in Fig. 5.  
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Fig. 5: Description of simplified single-element FE model of the type BWD3T used for all numerical 
simulations.  

 

 

The loadings and boundary conditions applied to the simplified FE model presented in Fig. 5 

replicate the addressed experimental creep and relaxation tests. FE simulations are executed in 

Lagamine, using the implemented Chaboche-type constitutive law and the parameters presented 

hereabove in Table 5. An initial time step of approximately 0.01% of the time-to-rupture (tr) of the 

alloy under the specific experimental conditions of the simulation is imposed. In case of convergence, 

this time step increases until a maximum time increment of 0.1% of the same tr and held constant 

until the simulation end. Newton-Raphson iterations at the viscoplastic-damage loop of the 

constitutive law (see flowchart in Fig. 4) are limited to a maximum number of 400 iterations. A 

maximum local residual magnitude of 1 × 10−5 is imposed as a convergence criterion for the 

calculation of the trial backstress (ξℱ) and variables within an inelastic regime (ξRloc). The sub-step 

routine is set as inactive for these simulations. 

The predicted tr and true creep strain versus true creep strain rate curves are extracted and 

compared with the available experimental curves in Fig. 6 along with their respective standard 

deviations (St.Dev.). 
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Fig. 6: Comparison of predicted and experimental �̇�-𝑝 curves of Incoloy 800H exhibiting non-classical 
creep and relaxation viscoplastic regimes. 

 

 

As seen in Fig. 6, the experimental non-classical creep and relaxation inelastic regimes exhibited 

by 800H alloy are predicted by the UVCM with admissible accuracy. The standard deviation 

calculated for the GB experimental dataset curves is almost 80% higher than the one calculated for 

the TK experimental dataset. This is attributed to the steep difference between the dislocation-driven 

inelastic regimes exhibited by these two curves, entailing a higher error than during the direct 

analytical viscosity function fit. 

Numerical predictions of the time-to-1% inelastic strain (t1%) and tr are compared with their 

respective experimental counterparts in Table 6 to further assess the capabilities of the UVCM. In 

particular, t1% is chosen as it is often used as a failure criterion in industrial applications. 

 

Table 6: Prediction of time-to-1% inelastic strain and time-to-rupture using the proposed UVCM. 

Dataset 
curve 

time-to-1% inelastic strain (h) time-to-rupture (h) 

Experimental Numerical Experimental Numerical 

GB-1 384 144.1 ± 27 1480 1450 ± 271 

GB-2 1.7 2.1 ± 0.4 8 9.5 ± 1.6 

TK-1 2.3 1.9 ± 0.2 25.9 20.0 ± 2.0 

TK-2 60 47.5 ± 5.0 654.1 567.1 ± 60 
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In general, the results presented in Table 6 verify that the prediction of the global non-classical 

inelastic behavior of the case-study alloy is successful. Numerical predictions of tr are found well 

within admissible accuracy margins, averaging a percentile error of −4.8−7.6%
+9.7%. In contrast, t1% 

predictions present a higher average percentile error of −19.3−9.7%
+3.7%. The larger error calculated for 

this last case can be attributed to the local loss of inelastic behavior prediction accuracy that takes 

place as the material behavior becomes transitional.  

 

4.2.Assessment of numerical convergence 

Loss of numerical convergence due to maximum number of iterations reached was detected in 

the early stages of FE simulations intended to replicate experimental tests belonging to datasets GB-

1, GB-2, and TK-1 (see Fig. 6). This took place only within the steep inelastic strain rate slope change 

(𝜕𝑝�̇�), occurring within mcr1 (see Fig. 1b). In absence of an active sub-step algorithm, this divergence 

led to a global time step decrement and high computational times. 

The effect of the proposed sub-step algorithm on the computational performance of the UVCM 

has been studied. FE simulations address the three experimental datasets exhibiting divergence. No 

change in the initial and maximum time increments for the time step or the Newton-Raphson 

algorithm convergence criteria (ξℱ  and ξRloc) compared to Section 4.1 is applied. The sub-step 

algorithm is activated, and the effect of a wide range of number of sub-steps (Nss) ranging from 1 to 

5000 imposed across the three simulations is computed. The numerical performance is assessed in 

terms of the normalized maximum number of iterations executed within the global FE algorithm 

level, whereas the computational efficiency is assessed in terms of the normalized CPU time spent 

until the simulation is completed. Results are presented in Fig. 7. 
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Fig. 7: Numerical and computational performance of the UVCM applied on non-classical viscous 
behavior of Incoloy 800H with a wide range of number of sub-steps (Nss). The green zone highlights 
the optimal Nss where the lowest number of iterations and lowest CPU time is achieved. 

 

 

The results show that the implementation of a sub-step algorithm with a Nss ranging between 80 

and 100 (highlighted with green in Fig. 7) can greatly decrease the computational times and the total 

number of iterations within the global level of the FE algorithm. Compared to the by-default inactive 

sub-step performance of the software, improvements in computational and numerical performance 

are also observed within values of Nss found anywhere below this optimal range (i.e., 2<Nss≤100). 

In contrast, increasing the Nss beyond such range shows highly detrimental effects as CPU times tend 

to increase consistently. 

5. Conclusions 

In this work, a mGW-type viscosity function was implemented into a Chaboche-type constitutive 

model following a unified viscoplastic formulation. The UVCM was successfully implemented in 

Lagamine following a fully implicit two-step elastic predictor and viscoplastic-damage corrector 

method. A sub-step algorithm was included to further improve the computational and numerical 

performance of the model. Numerical simulations were performed in the context of the case study, 
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seeking to replicate the reportedly non-classical viscoplastic regimes exhibited by Incoloy 800H 

under very-high thermal and low-mechanical loadings. Experimental correlation of the numerical 

creep and relaxation curves obtained demonstrate that such creep and relaxation material behavior 

can be predicted with good accuracy.  

The implemented sub-step algorithm with the integration scheme of the constitutive law 

managed to decrease the computational times and overall number of Newton-Raphson iterations 

taking place within the global FE algorithm level. It improves computational efficiency up to 38% and 

numerical convergence up to a 33%.  

The proposed UVCM exhibits remarkable capabilities for predicting complex non-classical 

viscoplastic regimes where continuous hardening and softening behaviors are observed. The work 

presented herein proposes a re-definition of the viscosity function as a methodology to enhance the 

prediction capabilities of Chaboche models. In conjunction with other well-studied modifications 

(such as new backstress formulations, damage, and equivalent effective stress formulations), this 

new tool gives means to explore new frontiers in engineering and material sciences.  

The ability of each mGW function to be correlated to a specific creep micromechanics 

phenomenon enables the identification of parameters to be performed via direct identification 

procedure. The creep curves database needed for a reliable identification of parameters is foreseen 

to be obtained via physical experimental tests and the simulation results of virtual tests. The latter 

could be achieved for instance via the development and application of a mean-field model that takes 

into consideration all microstructural features known to be involved in the viscoplastic response of 

the alloy [62].  

 

Acknowledgements 

This work is funded by FNRS throughout the FRIA grant N° 4000-8987 and WBI/AGCID RI02 

(DIE23-0001). As research director of F.R.S.-FNRS, A.M. Habraken thanks the Fund for Scientific 

Research for financial support. 

 

Conflict of interest 

The authors declare no conflict of interest. 

 

 



24 
 

Appendix A. Parameters and equations involved in the obtention of 

Fig.2 

In this section, a brief insight on the conventional Chaboche UVCM used for the obtention of Fig. 

2 alongside with the parameters used during the FE simulation are provided. As discussed earlier, 

the constitutive law developed and implemented by H. Morch [26] integrates a Norton-type viscosity 

function and a semi-coupled CDM formulation. The viscosity function is presented in its continuum 

form (A.1), where K is the drag stress and N is the viscous exponent.  

 

�̇� = 〈
𝐽2(�̃� − 𝐗) − 𝜎𝑦

K
〉N (A.1) 

 

Damage evolution is predicted using the Rabotnov-Kachanov creep CDM approach. The damage 

function is presented in its continuum form in (A.2), where Sc, Sce and Kc are parameters to be 

identified. 

 

�̇�𝑐 = [
𝐽2(�̃� − 𝐗)

Sc
]

Sce 1

(1 − 𝐷)kc
 (A.2) 

 

The parameters used to obtain the creep strain and damage evolution curves presented in Fig. 2 

are provided in Table A.1. Material parameters were extracted from [28–30], whereas those related 

to the Norton viscosity function (K,N) and creep damage function (Sc, Sce, Kc) were found throughout 

an inverse identification procedure (Levenberg-Marquardt algorithm, see [31]). The objective of the 

optimization algorithm was to minimize the error function comparing the experimental creep curve 

of 800H obtained at 980°C and 14.7 [MPa] extracted from [22] with the model prediction. In order to 

maximize chances of success, the curves were only addressed up until the start of the second 

precipitate strengthening process (see orange curve in Fig. 1b). Due to the very low stress and strain, 

the creep damage parameters evidenced negligible effect on the resulting creep response. 
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Table A.1: Summary of parameters used during the first FE simulation using a conventional Chaboche 
constitutive law.  

 Parameter Symbol Magnitude Source 

Material parameters 

Elastic modulus  E 7.30 [GPa]  [30] 

Poisson’s ratio ν 0.31  [30] 

Thermal dilatation coefficient  α 0.0182 × 10−6 K−1  [28,29] 

Yield stress σ0 10.50 [MPa] [30] 

Isotropic hardening 
parameters (4) 

Saturation rate b 0 Optimized 

Saturation value Q 5 × 10−4[MPa] Optimized 

Viscosity function 
parameters(A.1) 

Drag stress  K 5 × 108 [MPa]  Optimized 

Exponent  N 1.20  Optimized 

Rabotnov-Kachanov’s 
creep damage 
parameters (A.2) 

Creep damage parameter SC 1 × 103 Optimized 

Creep damage parameter Sce 1.50 Optimized 

Creep damage parameter kc 2.00 Optimized 

 

 

 

Appendix B. Components of local residuals Jacobian matrix 

The Jacobian matrix resulting from the application of the viscoplastic loop NR algorithm is 

presented in (B.1). 

 

𝒥{𝐑𝑙𝑜𝑐} =

{
 
 
 
 

 
 
 
 
𝜕Δ𝛜𝑒𝑅𝛜𝑒

 
𝜕Δ𝛜𝑒𝑅𝑝
 

𝜕Δ𝛜𝑒𝑅𝛔
 

𝜕Δ𝛜𝑒𝑅𝐗𝑖
 

𝜕Δ𝛜𝑒𝑅𝐷

    

𝜕Δ𝑝𝑅𝛜𝑒
 

𝜕Δ𝑝𝑅𝑝
 

𝜕Δ𝑝𝑅𝛔
 

𝜕Δ𝑝𝑅𝐗𝑖
 

𝜕Δ𝑝𝑅𝐷

    

𝜕Δ𝛔𝑅𝛜𝑒
 

𝜕Δ𝛔𝑅𝑝
 

𝜕Δ𝛔𝑅𝛔
 

𝜕Δ𝛔𝑅𝐗𝑖
 

𝜕Δ𝛔𝑅𝐷

    

𝜕Δ𝐗𝑖𝑅𝛜𝑒
 

𝜕Δ𝐗𝑖𝑅𝑝
 

𝜕Δ𝐗𝑖𝑅𝛔
 

𝜕Δ𝐗𝑖𝑅𝐗𝑖
 

𝜕Δ𝐗𝑖𝑅𝐷

    

𝜕Δ𝐷𝑅𝛜𝑒
 

𝜕Δ𝐷𝑅𝑝
 

𝜕Δ𝐷𝑅𝛔
 

𝜕Δ𝐷𝑅𝐗𝑖
 

𝜕Δ𝐷𝑅𝐷}
 
 
 
 

 
 
 
 

 
(B.1) 

 

 

 

 

 

 

The partial derivatives expressed in (B.1) 
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 are henceforth defined row-by-row. The partial derivatives of the local residual function 

intended to calculate the elastic strain tensor are shown in (B.2)-(B.6). 

𝜕Δ𝛜𝑒𝑅𝛜𝑒 = 𝐈4 (B.2) 

𝜕Δ𝑝𝑅𝛜𝑒 = 𝐧 (B.3) 

𝜕Δ𝛔𝑅𝛜𝑒 =
Δ𝑝

(1 − 𝐷)
𝜕Δ𝛔𝐧

x (B.4) 

𝜕Δ𝐗𝑖𝑅𝛜𝑒 =
Δ𝑝

(1 − 𝐷)
𝜕Δ𝐗𝑖𝐧

x (B.5) 

𝜕Δ𝐷𝑅𝛜𝑒 =
Δ𝑝

(1 − 𝐷)
𝜕Δ𝐷𝐧

x (B.6) 

 

The partial derivatives of the local residual function intended to calculate the incremental 

inelastic strain from the mGW-type viscosity function are presented in (B.7) -(B.11) . 

𝜕Δ𝛜𝑒𝑅𝑝 = [0 0 0 0 0 0] (B.7)  

𝜕Δ𝑝𝑅𝑝 = 1 −∑ [K𝑗 exp(
𝑇

Cq𝑗
) 𝐽2(�̃� − 𝐗)

n𝑗m𝑗𝑝
(m𝑗−1)Δ𝑡]

𝑛𝑉𝑃

𝑗=1

− KT|Δ𝑇|𝐽2(�̃� − 𝐗)mT𝑝
(mT−1) (B.8)  

𝜕Δ𝛔𝑅𝑝 = −{∑ [K𝑗 exp (
𝑇

Cq𝑗
)n𝑗𝐽2(�̃� − 𝐗)

(n𝑗−1)𝑝m𝑗Δ𝑡]

𝑛𝑉𝑃

𝑗=1

+ KT|Δ𝑇|𝑝
mT}𝜕Δ𝛔𝐽2(�̃� − 𝐗) (B.9)  

𝜕Δ𝐗𝑖𝑅𝑝 = −{∑ [K𝑗 exp (
𝑇

Cq𝑗
)n𝑗𝐽2(�̃� − 𝐗)

(n𝑗−1)𝑝m𝑗Δ𝑡]

𝑛𝑉𝑃

𝑗=1

+ KT|Δ𝑇|𝑝
mT}𝜕Δ𝐗𝑖𝐽2(�̃� − 𝐗) (B.10)  

𝜕Δ𝐷𝑅𝑝 = −{∑ [K𝑗 exp (
𝑇

Cq𝑗
)n𝑗𝐽2(�̃� − 𝐗)

(n𝑗−1)𝑝m𝑗Δ𝑡]

𝑛𝑉𝑃

𝑗=1

+ KT|Δ𝑇|𝑝
mT}𝜕Δ𝐷𝐽2(�̃� − 𝐗) (B.11)  
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The partial derivatives of the local residual function for the calculation of the stress tensor are 

given in (B.12)-(B.16)  

𝜕Δ𝛜𝑒𝑅𝛔 = 𝐈4 (B.12) 

𝜕Δ𝑝𝑅𝛔 = [0 0 0 0 0 0]
T (B.13)  

𝜕Δ𝛔𝑅𝛔 = −
1

(1 − 𝐷)
𝑖𝑛𝑣(ℂ𝑒) (B.14)  

𝜕Δ𝐗𝑖𝑅𝛔 = 𝟎6×6 (B.15)  

𝜕Δ𝐷𝑅𝛔 = −
𝛔

(1 − 𝐷)2
𝑖𝑛𝑣(ℂ𝑒) (B.16)  

 

The partial derivatives for the ith extended AF backstress tensor local residual function are given 

in (B.17) (B.21)  

 

𝜕Δ𝛜𝑒𝑅𝐗𝑖 = 𝟎6×6 (B.17)  

𝜕Δ𝑝𝑅𝐗𝑖 = −
2

3
C𝑖𝐧 + γ𝑖(𝐗𝑖 − 𝐘𝑖) (B.18)  

𝜕Δ𝛔𝑅𝐗𝑖 = −
2

3
C𝑖

Δ𝑝

(1 − 𝐷)
𝜕Δ𝛔𝐧

x (B.19)  

𝜕Δ𝐗𝑖𝑅𝐗𝑖 = [1 + γ𝑖Δ𝑝 + b𝑖Δ𝑡𝐽2(X̲𝑖)
(r𝑖−1) −

1

C𝑖
(𝜕𝑇𝐶𝑖)Δ𝑇] 𝐈4 +

2

3
C𝑖

Δ𝑝

(1 − 𝐷)
𝜕𝐒𝐧

x − 

γ𝑖Δ𝑝𝜕Δ𝐗𝑖𝐘𝑖 +
3

2
b𝑖Δ𝑡(r𝑖 − 1)𝐽2(X̲𝑖)

(r𝑖−3)𝐗𝑖⊗ 𝐈4⊗𝐗𝑖 

(B.20)  

𝜕Δ𝐷𝑅𝐗𝑖 = −
2

3

C𝑖Δ𝑝

(1 − 𝐷)
𝜕Δ𝐷𝐧

x (B.21)  
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Partial derivatives of the local residual function intended for the calculation of the coupled 

damage accumulation are provided in (B.22) (B.26)  

𝜕Δ𝛜𝑒𝑅𝐷 = [0 0 0 0 0 0] (B.22)  

𝜕Δ𝑝𝑅𝐷 = −KTD|Δ𝑇|mTD𝑝
(mTD−1) (B.23)  

𝜕Δ𝛔𝑅𝐷 = −KDΔ𝑡𝜕Δ𝛔𝐽2(�̃� − 𝐗) (B.24)  

𝜕Δ𝐗𝑖𝑅𝐷 = −KDΔ𝑡𝜕Δ𝐗𝑖𝐽2(�̃� − 𝐗) (B.25)  

𝜕Δ𝐷𝑅𝐷 = 1 − KDΔ𝑡𝜕Δ𝐷𝐽2(�̃� − 𝐗) (B.26)  

 

Some important partial derivatives appearing in equations presented hereabove, entailed to the 

normal vector nx or the equivalent von Mises effective stress 𝐽2(�̃� − 𝐗) are presented in (B.27) (B.32)  

𝜕Δ𝛔𝐧
x =

1

(1 − 𝐷)𝐽2(�̃� − 𝐗)
[
3

2
𝐈4 − 𝐧

x⊗𝐧x] ⊗ [𝐈2 −
1

3
𝐈1⊗ 𝐈1] (B.27)  

𝜕Δ𝐗𝑖𝐧
x = −𝜕Δ�̃�𝐧

x (B.28)  

𝜕Δ𝐒𝐧
x =

1

(1 − 𝐷)𝐽2(�̃� − 𝐗)
[
3

2
𝐈4 − 𝐧

x⊗𝐧x] (B.29)  

𝜕Δ𝐷𝐧
x =

1

(1 − 𝐷)2𝐽2(�̃� − 𝐗)
[
3

2
𝐈4 − 𝐧

x⊗𝐧x] ⊗ 𝐒 (B.30)  

𝜕Δ𝛔𝐽2(�̃� − 𝐗) = 𝐧⊗ [𝐈2 −
1

3
𝐈1⊗ 𝐈1] (B.31)  

𝜕Δ𝐷𝐽2(�̃� − 𝐗) = 𝐧
x⊙𝐒 (B.32)  

 

In case of law convergence, the consistent tangent operator of the local system ℂ = 𝑑𝛜𝛔 is 

calculated from the inverse of the Jacobian matrix resulting from the last successful NR iteration at 

the end of the step. The stress-strain relationship is obtained from the components related to (B.4). 

In case of sub-step routine activation, the consistent tangent operator is calculated at the end of each 

sub-step and accumulated into a matrix ℂNss. The final ℂ at the step is later calculated as the average 

of the ℂNss as seen in (B.33). 

 ℂ =
ℂNss
Nss

 (B.33)  
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