Sequenced-based GWAS for linear classification traits in Belgian Blue beef cattle reveals new coding variants in genes regulating body size in mammals.
Gualdrón Duarte, José Luis; Yuan, Can; Gori, Ann-Stephanet al.
2023 • In Genetics, Selection, Evolution, 55 (1), p. 83
Cattle/genetics; Body Size/genetics; Mammals/genetics; Quantitative Trait Loci; Body Size; Cattle; Genome-Wide Association Study; Genetics
Abstract :
[en] [en] BACKGROUND: Cohorts of individuals that have been genotyped and phenotyped for genomic selection programs offer the opportunity to better understand genetic variation associated with complex traits. Here, we performed an association study for traits related to body size and muscular development in intensively selected beef cattle. We leveraged multiple trait information to refine and interpret the significant associations.
RESULTS: After a multiple-step genotype imputation to the sequence-level for 14,762 Belgian Blue beef (BBB) cows, we performed a genome-wide association study (GWAS) for 11 traits related to muscular development and body size. The 37 identified genome-wide significant quantitative trait loci (QTL) could be condensed in 11 unique QTL regions based on their position. Evidence for pleiotropic effects was found in most of these regions (e.g., correlated association signals, overlap between credible sets (CS) of candidate variants). Thus, we applied a multiple-trait approach to combine information from different traits to refine the CS. In several QTL regions, we identified strong candidate genes known to be related to growth and height in other species such as LCORL-NCAPG or CCND2. For some of these genes, relevant candidate variants were identified in the CS, including three new missense variants in EZH2, PAPPA2 and ADAM12, possibly two additional coding variants in LCORL, and candidate regulatory variants linked to CCND2 and ARMC12. Strikingly, four other QTL regions associated with dimension or muscular development traits were related to five (recessive) deleterious coding variants previously identified.
CONCLUSIONS: Our study further supports that a set of common genes controls body size across mammalian species. In particular, we added new genes to the list of those associated with height in both humans and cattle. We also identified new strong candidate causal variants in some of these genes, strengthening the evidence of their causality. Several breed-specific recessive deleterious variants were identified in our QTL regions, probably as a result of the extreme selection for muscular development in BBB cattle.
Disciplines :
Animal production & animal husbandry Genetics & genetic processes Veterinary medicine & animal health
Author, co-author :
Gualdrón Duarte, José Luis; Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium. jlgualdron@awegroupe.be ; Walloon Breeders Association, Rue des Champs Elysées, 4, 5590, Ciney, Belgium. jlgualdron@awegroupe.be
Yuan, Can ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Gori, Ann-Stephan; Walloon Breeders Association, Rue des Champs Elysées, 4, 5590, Ciney, Belgium
Moreira, Gabriel C M; Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Avenue de l'Hôpital, 1, Liège, 4000, Belgium
Takeda, Haruko ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Charlier, Carole ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics
Georges, Michel ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics
Druet, Tom ; Université de Liège - ULiège > GIGA > GIGA Medical Genomics - Unit of Animal Genomics ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Language :
English
Title :
Sequenced-based GWAS for linear classification traits in Belgian Blue beef cattle reveals new coding variants in genes regulating body size in mammals.
Publication date :
2023
Journal title :
Genetics, Selection, Evolution
ISSN :
0999-193X
eISSN :
1297-9686
Publisher :
BioMed Central Ltd, France
Volume :
55
Issue :
1
Pages :
83
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
This work was supported by the Service Public de Wallonie (WALInnov CAUSEL project). We used the supercomputing facilities of the “Consortium d’Equipements en Calcul Intensif en Fédération Wallonie-Bruxelles” (CECI), funded by the F.R.S.-FNRS.
Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29. DOI: 10.1093/genetics/157.4.1819
Van Eenennaam AL, Weigel KA, Young AE, Cleveland MA, Dekkers JCM. Applied animal genomics: results from the field. Annu Rev Anim Biosci. 2014;2:105–39. DOI: 10.1146/annurev-animal-022513-114119
Meuwissen T, Hayes B, Goddard M. Genomic selection: a paradigm shift in animal breeding. Anim Front. 2016;6:6–14. DOI: 10.2527/af.2016-0002
Ma L, O’Connell JR, VanRaden PM, Shen B, Padhi A, Sun C, et al. Cattle sex-specific recombination and genetic control from a large pedigree analysis. PLoS Genet. 2015;11: e1005387. DOI: 10.1371/journal.pgen.1005387
Kadri NK, Harland C, Faux P, Cambisano N, Karim L, Coppieters W, et al. Coding and noncoding variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B affect recombination rate in cattle. Genome Res. 2016;26:1323–32. DOI: 10.1101/gr.204214.116
Pryce JE, Hayes BJ, Bolormaa S, Goddard ME. Polymorphic regions affecting human height also control stature in cattle. Genetics. 2011;187:981–4. DOI: 10.1534/genetics.110.123943
Signer-Hasler H, Flury C, Haase B, Burger D, Simianer H, Leeb T, et al. A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One. 2012;7:e37282. DOI: 10.1371/journal.pone.0037282
Bouwman AC, Daetwyler HD, Chamberlain AJ, Ponce CH, Sargolzaei M, Schenkel FS, et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat Genet. 2018;50:362–7. DOI: 10.1038/s41588-018-0056-5
Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010;8: e1000451. DOI: 10.1371/journal.pbio.1000451
Karim L, Takeda H, Lin L, Druet T, Arias JAC, Baurain D, et al. Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet. 2011;43:405–13. DOI: 10.1038/ng.814
Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Pielberg GR, Sigurdsson S, et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 2011;7: e1002316. DOI: 10.1371/journal.pgen.1002316
Petersen JL, Mickelson JR, Rendahl AK, Valberg SJ, Andersson LS, Axelsson J, et al. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genet. 2013;9: e1003211. DOI: 10.1371/journal.pgen.1003211
Druet T, Pérez-Pardal L, Charlier C, Gautier M. Identification of large selective sweeps associated with major genes in cattle. Anim Genet. 2013;44:758–62. DOI: 10.1111/age.12073
Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997;17:71–4. DOI: 10.1038/ng0997-71
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006;38:813–8. DOI: 10.1038/ng1810
Matika O, Robledo D, Pong-Wong R, Bishop SC, Riggio V, Finlayson H, et al. Balancing selection at a premature stop mutation in the myostatin gene underlies a recessive leg weakness syndrome in pigs. PLoS Genet. 2019;15: e1007759. DOI: 10.1371/journal.pgen.1007759
Druet T, Ahariz N, Cambisano N, Tamma N, Michaux C, Coppieters W, et al. Selection in action: dissecting the molecular underpinnings of the increasing muscle mass of Belgian blue cattle. BMC Genom. 2014;15: 796. DOI: 10.1186/1471-2164-15-796
Fasquelle C, Sartelet A, Li W, Dive M, Tamma N, Michaux C, et al. Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the crooked tail syndrome in Belgian blue cattle. PLoS Genet. 2009;5: e1000666. DOI: 10.1371/journal.pgen.1000666
Sartelet A, Druet T, Michaux C, Fasquelle C, Géron S, Tamma N, et al. A splice site variant in the bovine rnf11 gene compromises growth and regulation of the inflammatory response. PLoS Genet. 2012;8: e1002581. DOI: 10.1371/journal.pgen.1002581
Charlier C, Li W, Harland C, Littlejohn M, Coppieters W, Creagh F, et al. NGS-based reverse genetic screen for common embryonic lethal mutations compromising fertility in livestock. Genome Res. 2016;26:1333–41. DOI: 10.1101/gr.207076.116
Druet T, Macleod IM, Hayes B. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions. Heredity (Edinb). 2014;112:39–47. DOI: 10.1038/hdy.2013.13
Brøndum RF, Guldbrandtsen B, Sahana G, Lund MS, Su G. Strategies for imputation to whole genome sequence using a single or multi-breed reference population in cattle. BMC Genom. 2014;15: 728. DOI: 10.1186/1471-2164-15-728
Sanchez MP, Govignon-Gion A, Croiseau P, Fritz S, Hozé C, Miranda G, et al. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genet Sel Evol. 2017;49:68. DOI: 10.1186/s12711-017-0344-z
van den Berg I, Xiang R, Jenko J, Pausch H, Boussaha M, Schrooten C, et al. Meta-analysis for milk fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight cattle breeds. Genet Sel Evol. 2020;52:37. DOI: 10.1186/s12711-020-00556-4
Tiplady KM, Lopdell TJ, Reynolds E, Sherlock RG, Keehan M, Johnson TJ, et al. Sequence-based genome-wide association study of individual milk mid-infrared wavenumbers in mixed-breed dairy cattle. Genet Sel Evol. 2021;53:62. DOI: 10.1186/s12711-021-00648-9
Stephens M. A unified framework for association analysis with multiple related phenotypes. PLoS One. 2013;8:e65245. DOI: 10.1371/journal.pone.0065245
Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, et al. A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for stature, fatness and reproduction in beef cattle. PLoS Genet. 2014;10: e1004198. DOI: 10.1371/journal.pgen.1004198
Herd Book Blanc Bleu Belge. https://www.hbbbb.be/en/pages/introduction-explanations. Accessed 3 Nov 2023.
Association Wallonne des Eleveurs (awé). https://www.awenet.be/awe/commun/asbl/viande/index_taureaux_explication.php. Accessed 3 Nov 2023.
Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Tseng E, et al. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience. 2020;9: giaa021. DOI: 10.1093/gigascience/giaa021
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60. DOI: 10.1093/bioinformatics/btp324
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics. 2015;31:2032–4. DOI: 10.1093/bioinformatics/btv098
Picard. A set of command line tools (in Java) for manipulating high-throughput sequencing (HTS) data and formats such as SAM/BAM/CRAM and VCF. https://broadinstitute.github.io/picard. Accessed 3 Nov 2023.
Daetwyler HD, Capitan A, Pausch H, Stothard P, Van Binsbergen R, Brøndum RF, et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat Genet. 2014;46:858–65. DOI: 10.1038/ng.3034
Hayes BJ, Daetwyler HD. 1000 Bull Genomes Project to map simple and complex genetic traits in cattle: applications and outcomes. Annu Rev Anim Biosci. 2019;7:89–102. DOI: 10.1146/annurev-animal-020518-115024
Caetano-Anolles D. Variant quality score recalibration (VQSR). 2023. https://shorturl.at/cikpA. Accessed 3 Nov 2023.
Nicolazzi EL, Picciolini M, Strozzi F, Schnabel RD, Lawley C, Pirani A, et al. SNPchiMp: a database to disentangle the SNPchip jungle in bovine livestock. BMC Genom. 2014;15: 123. DOI: 10.1186/1471-2164-15-123
van Binsbergen R, Bink MC, Calus MPL, van Eeuwijk FA, Hayes BJ, Hulsegge I, et al. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genet Sel Evol. 2014;46: 41. DOI: 10.1186/1297-9686-46-41
Browning BL, Yu Z. Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am J Hum Genet. 2009;85:847–61. DOI: 10.1016/j.ajhg.2009.11.004
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7. DOI: 10.1038/ng.3656
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44:821–4. DOI: 10.1038/ng.2310
Cinar O, Viechtbauer W. The poolr package for combining independent and dependent p values. J Stat Softw. 2022;101:1–42. DOI: 10.18637/jss.v101.i01
Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J R Stat Soc Ser B Stat Methodol. 2020;82:1273–300. DOI: 10.1111/rssb.12388
Zou Y, Carbonetto P, Wang G, Stephens M. Fine-mapping from summary data with the sum of single effects model. PLoS Genet. 2022;18: e1010299. DOI: 10.1371/journal.pgen.1010299
David I, Elsen JM, Concordet D. CLIP test: a new fast, simple and powerful method to distinguish between linked or pleiotropic quantitative trait loci in linkage disequilibria analysis. Heredity (Edinb). 2013;110:232–8. DOI: 10.1038/hdy.2012.70
Momozawa Y, Dmitrieva J, Théâtre E, Deffontaine V, Rahmouni S, Charloteaux B, et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun. 2018;9:2427. DOI: 10.1038/s41467-018-04365-8
Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods. 2014;11:407–9. DOI: 10.1038/nmeth.2848
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122. DOI: 10.1186/s13059-016-0974-4
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–50. DOI: 10.1101/gr.3715005
Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6: e1001025. DOI: 10.1371/journal.pcbi.1001025
Yuan C, Tang L, Lopdell T, Petrov VA, Oget-Ebrad C, Costa Monteiro Moreira G, et al. An organism-wide ATAC-seq peak catalogue for the bovine and its use to identify regulatory variants. Genome Res. 2023. 10.1101/gr.277947.123. DOI: 10.1101/gr.277947.123
Liu S, Gao Y, Canela-Xandri O, Wang S, Yu Y, Cai W, et al. A multi-tissue atlas of regulatory variants in cattle. Nat Genet. 2022;54:1438–47. DOI: 10.1038/s41588-022-01153-5
Charlier C, Coppieters W, Rollin F, Desmecht D, Agerholm JS, Cambisano N, et al. Highly effective SNP-based association mapping and management of recessive defects in livestock. Nat Genet. 2008;40:449–54. DOI: 10.1038/ng.96
Xiang R, Fang L, Liu S, Macleod IM, Liu Z, Breen EJ, et al. Gene expression and RNA splicing explain large proportions of the heritability for complex traits in cattle. Cell Genom. 2023;3: 100385. DOI: 10.1016/j.xgen.2023.100385
Kulski JK, Suzuki S, Shiina T. Human leukocyte antigen super-locus: nexus of genomic supergenes, SNPs, indels, transcripts, and haplotypes. Hum Genome Var. 2022;9:49. DOI: 10.1038/s41439-022-00226-5
Zorc M, Ogorevc J, Dovč P. The new bovine reference genome assembly provides new insight into genomic organization of the bovine major histocompatibility complex. J Cent Eur Agric. 2019;20:1111–5. DOI: 10.5513/JCEA01/20.4.2679
Rombouts T, Druet T, Gualdrón Duarte JL, Ahariz N, Karim K, Coppieters W A hypomorphic mutation in the ATP2A1 gene increases muscle mass yet compromises meat quality of Belgian Blue cattle. In: Proceedings of the 12th world congress on genetics applied to livestock production, 3–8 July 2022; Rotterdam. 2022.
Dauber A, Muñoz-Calvo MT, Barrios V, Domené HM, Kloverpris S, Serra‐Juhé C, et al. Mutations in pregnancy‐associated plasma protein A2 cause short stature due to low IGF‐I availability. EMBO Mol Med. 2016;8:363–74. DOI: 10.15252/emmm.201506106
Argente J, Pérez-Jurado L. History and clinical implications of PAPP-A2 in human growth: when reflecting on idiopathic short stature leads to a specific and new diagnosis: understanding the concept of low IGF-I availability. Growth Horm IGF Res. 2018;40:17–9. DOI: 10.1016/j.ghir.2018.04.001
Christians JK, Amiri N, Schipilow JD, Zhang SW, May-Rashke KI. Pappa2 deletion has sex- and age-specific effects on bone in mice. Growth Horm IGF Res. 2019;44:6–10. DOI: 10.1016/j.ghir.2018.10.006
Fujimoto M, Andrew M, Liao L, Zhang D, Yildirim G, Sluss P, et al. Low IGF-I bioavailability impairs growth and glucose metabolism in a mouse model of human PAPPA2 p.ALA1033Val mutation. Endocrinology. 2019;160:1363–76. DOI: 10.1210/en.2018-00755
Hao J, Wang W, Wen Y, Xiao X, He A, Guo X, et al. A bivariate genome-wide association study identifies ADAM12 as a novel susceptibility gene for Kashin-Beck disease. Sci Rep. 2016;6: 31792. DOI: 10.1038/srep31792
Tokumasu Y, Iida A, Wang Z, Ansai S, Kinoshita M, Sehara-Fujisawa A. ADAM12-deficient zebrafish exhibit retardation in body growth at the juvenile stage without developmental defects. Dev Growth Differ. 2016;58:409–21. DOI: 10.1111/dgd.12286
Tatton-Brown K, Hanks S, Ruark E, Zachariou A, Del Vecchio Duarte S, Ramsay E, et al. Germline mutations in the oncogene EZH2 cause Weaver syndrome and increased human height. Oncotarget. 2011;2:1127–33. DOI: 10.18632/oncotarget.385
Suri T, Dixit A. The phenotype of EZH2 haploinsufficiency—1.2-Mb deletion at 7q36.1 in a child with tall stature and intellectual disability. Am J Med Genet A. 2017;173:2731–5. DOI: 10.1002/ajmg.a.38356
Polonis K, Blackburn PR, Urrutia RA, Lomberk GA, Kruisselbrink T, Cousin MA, et al. Co-occurrence of a maternally inherited DNMT3A duplication and a paternally inherited pathogenic variant in EZH2 in a child with growth retardation and severe short stature: atypical Weaver syndrome or evidence of a DNMT3A dosage effect? Cold Spring Harb Mol Case Stud. 2018;4: a002899. DOI: 10.1101/mcs.a002899
Raymond B, Yengo L, Costilla R, Schrooten C, Bouwman AC, Hayes BJ, et al. Using prior information from humans to prioritize genes and gene-associated variants for complex traits in livestock. PLoS Genet. 2020;16: e1008780. DOI: 10.1371/journal.pgen.1008780
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86. DOI: 10.1038/ng.3097
Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ~ 700 000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–9. DOI: 10.1093/hmg/ddy271
Takasuga A. PLAG1 and NCAPG-LCORL in livestock. Anim Sci J. 2016;87:159–67. DOI: 10.1111/asj.12417
Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, et al. Many sequence variants affecting diversity of adult human height. Nat Genet. 2008;40:609–15. DOI: 10.1038/ng.122
Jiang J, Cole JB, Freebern E, Da Y, VanRaden PM, Ma L. Functional annotation and bayesian fine-mapping reveals candidate genes for important agronomic traits in Holstein bulls. Commun Biol. 2019;2:212. DOI: 10.1038/s42003-019-0454-y
Abo-Ismail MK, Brito LF, Miller SP, Sargolzaei M, Grossi DA, Moore SS, et al. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Genet Sel Evol. 2017;49:82. DOI: 10.1186/s12711-017-0356-8
Igoshin AV, Yudin NS, Belonogova NM, Larkin DM. Genome-wide association study for body weight in cattle populations from Siberia. Anim Genet. 2019;50:250–3. DOI: 10.1111/age.12786
Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46:294–8. DOI: 10.1038/ng.2882
Pirozzi F, Lee B, Horsley N, Burkardt DD, Dobyns WB, Graham JM Jr, et al. Proximal variants in CCND2 associated with microcephaly, short stature, and developmental delay: a case series and review of inverse brain growth phenotypes. Am J Med Genet A. 2021;185:2719–38. DOI: 10.1002/ajmg.a.62362
Hayes B, MacLeod I, Daetwyler H, Bowman P, Chamberlian A, Vander Jagt C Genomic prediction from whole genome sequence in livestock: the 1000 bull genomes project. In: Proceedings of the 10th world congress of genetics applied to livestock production, 17–22 August 2014; Vancouver. 2014.
Catalog GWAS. The NHGRI-EBI catalog of human genome-wide association studies. https://www.ebi.ac.uk/gwas/. Accessed 03 Nov 2023.
Hu ZL, Park CA, Reecy JM. Bringing the animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic Acids Res. 2022;50:D956–61. DOI: 10.1093/nar/gkab1116
Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, Sakaue S, et al. A saturated map of common genetic variants associated with human height. Nature. 2022;610:704–12. DOI: 10.1038/s41586-022-05275-y
Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104:65–75. DOI: 10.1016/j.ajhg.2018.11.008
Li D, Song H, Mei H, Fang E, Wang X, Yang F, et al. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun. 2018;9:2829. DOI: 10.1038/s41467-018-05286-2
Gaydos LJ, Wang W, Strome S. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science. 2014;345:1515–8. DOI: 10.1126/science.1255023
Pereira JD, Sansom SN, Smith J, Dobenecker MW, Tarakhovsky A, Livesey FJ. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci USA. 2010;107:15957–62. DOI: 10.1073/pnas.1002530107
Tan JZ, Yan Y, Wang XX, Jiang Y, Xu HE. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin. 2014;35:161–74. DOI: 10.1038/aps.2013.161
Ferreira CR, Zein WM, Huryn LA, Merker A, Berger SI, Wilson WG, et al. Defining the clinical phenotype of Saul–Wilson syndrome. Genet Med. 2020;22:857–66. DOI: 10.1038/s41436-019-0737-1
Ferreira CR, Xia ZJ, Clément A, Parry DA, Davids M, Taylan F, et al. A recurrent de novo heterozygous COG4 substitution leads to Saul-Wilson syndrome, disrupted vesicular trafficking, and altered proteoglycan glycosylation. Am J Hum Genet. 2018;103:553–67. DOI: 10.1016/j.ajhg.2018.09.003
Xia ZJ, Zeng XXI, Tambe M, Ng BG, Dong PDS, Freeze HH. A dominant heterozygous mutation in COG4 causes Saul–Wilson syndrome, a primordial dwarfism, and disrupts zebrafish development via wnt signaling. Front Cell Dev Biol. 2021;9: 720688. DOI: 10.3389/fcell.2021.720688
Blake JA, Baldarelli R, Kadin JA, Richardson JE, Smith CL, Bult CJ. Mouse genome database (MGD): knowledgebase for mouse-human comparative biology. Nucleic Acids Res. 2021;49:D981–7. DOI: 10.1093/nar/gkaa1083
Kadri NK, Sahana G, Charlier C, Iso-Touru T, Guldbrandtsen B, Karim L, et al. A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in Nordic Red cattle: additional evidence for the common occurrence of balancing selection in livestock. PLoS Genet. 2014;10: e1004049. DOI: 10.1371/journal.pgen.1004049
Derks MFL, Lopes MS, Bosse M, Madsen O, Dibbits B, Harlizius B, et al. Balancing selection on a recessive lethal deletion with pleiotropic effects on two neighboring genes in the porcine genome. PLoS Genet. 2018;14: e1007661. DOI: 10.1371/journal.pgen.1007661
Hedrick PW. Heterozygote advantage: the effect of artificial selection in livestock and pets. J Hered. 2015;106:141–54. DOI: 10.1093/jhered/esu070
McPherron AC, Huynh TV, Lee SJ. Redundancy of myostatin and growth/differentiation factor 11 function. BMC Dev Biol. 2009;9: 24. DOI: 10.1186/1471-213X-9-24
Zhi X, Chen C. WWP1: a versatile ubiquitin E3 ligase in signaling and diseases. Cell Mol Life Sci. 2012;69:1425–34. DOI: 10.1007/s00018-011-0871-7