Electrical resistivity tomography; Geochemical analysis; Geophysics; Induced polarization; Metallurgical residues; Resource-recovery; Field data; Geochemicals; Geophysical data; Laboratory measurements; Metallurgical residue; Resource recovery; Uncertainty; Environmental Engineering; Waste Management and Disposal; Management, Monitoring, Policy and Law; General Medicine
Abstract :
[en] The increasing need to find alternative stocks of critical raw materials drives to revisit the residues generated during the former production of mineral and metallic raw materials. Geophysical methods contribute to the sustainable characterization of metallurgical residues inferring on their composition, zonation and volume(s) estimation. Nevertheless, more quantitative approaches are needed to link geochemical or mineralogical analyses with the geophysical data. In this contribution, we describe a methodology that integrates geochemical and geophysical laboratory measurements to interpret geophysical field data solving a classification problem. The final aim is to estimate volume(s) of different types of materials to assess the potential resource recovery. We illustrate this methodology with a slag heap composed of residues from a former iron and steel factory. First, we carried out a 3D field acquisition using electrical resistivity tomography (ERT) and induced polarization (IP), based on which, a sampling survey was designed. We conducted laboratory measurements of ERT, IP, spectral induced polarization (SIP), and X-ray fluorescence analysis, based on which, 4 groups of different chemical composition were identified. Then we carried out a 3D probabilistic classification of the field data, based on 2D kernel density estimators (for each group) fitted to the inverted data collocated with the samples. The estimated volumes based on the classification model were: 4.17 × 10^3 m3 ± 12 %, 1.888 × 10^5 m3 ± 12 %, 59.4 × 10^3 m3 ± 19 %, and 2.30 × 10^4 m3 ± 21% for the groups ordered with an increasing metallic content. The uncertainty ranges were derived from comparing the volumes with and without considering the probabilities associated to the classification. We found that a representative sampling and the definition of the KDE bandwidths are defining elements in the classification and ultimately the estimation of volumes. This methodology is suitable to quantitatively interpret geophysical data in terms of the geochemical composition of the materials, integrating uncertainties both in the classification and the estimation of volumes. Furthermore, several crucial elements in the investigation of metallurgical residues could be applied in a real case study, e.g., geophysical field acquisition, sampling and lab measurements.
This work has been financed by the European Union's program of Interreg Norh-West Europe and the Wallon Region within the framework of the multidisciplinary project of NWE-REGENERATIS . We thank all project partners and group Duferco Wallonie.
Asare, M.O., Afriyie, J.O., Ancient mining and metallurgy as the origin of Cu, Ag, Pb, Hg, and Zn contamination in soils: a review: water. Air, Soil Pollut., 232(6), 2021, 240, 10.1007/s11270-021-05166-4.
Benoit, S., Ghysels, G., Gommers, K., Hermans, T., Nguyen, F., Huysmans, M., Characterization of spatially variable riverbed hydraulic conductivity using electrical resistivity tomography and induced polarization. Hydrogeol. J. 1:27 (2019), 395–407, 10.1007/s10040-018-1862-7.
Canters, F., Evaluating the uncertainty of area estimates derived from fuzzy land-cover classification. Photogramm. Eng. Rem. Sens. 63:4 (1997), 403–414.
Caterina, D., Beaujean, J., Robert, T., Nguyen, F., A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf. Geophys. 11:6 (2013), 639–657, 10.3997/1873-0604.2013022.
Cole, K.S., Cole, R.H., Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9:4 (1941), 341–351, 10.1063/1.1750906.
Dahlin, T., Zhou, B., Multiple-gradient array measurements for multichannel 2D resistivity imaging. Near Surf. Geophys. 4:2 (2006), 113–123.
Das, I., Morlighem, M., Barnes, J., Gudmundsson, G.H., Goldberg, D., Dias dos Santos, T., In the quest of a parametric relation between ice sheet model inferred Weertman's Sliding‐Law parameter and airborne radar‐derived basal reflectivity underneath Thwaites glacier, Antarctica. Geophys. Res. Lett., 50(10), 2023.
Dewar, N., Knight, R., Estimation of the top of the saturated zone from airborne electromagnetic data. Geophysics 85:5 (2020), 63–76, 10.1190/geo2019-0539.1.
Dino, G.A., Cavallo, A., A. F, Piercarlo, R., Mancini, S., Raw materials supply: Kaolin and quartz from ore deposits and recycling activities. The example of the Monte Bracco area (Piedmont, Northern Italy). Resour. Pol., 74, 2021, 102413, 10.1016/j.resourpol.2021.102413.
Flores-Orozco, A., Gallistl, J., Steiner, M., Brandstätter, C., Fellner, J., Mapping biogeochemically active zones in landfills with induced polarization imaging: The Heferlbach landfill. Waste Manag. 107 (2020), 121–132, 10.1016/j.wasman.2020.04.001.
Florsch, N., Llubes, M., Téreygeol, F., Ghorbani, A., Roblet, P., Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel-Minier site. J. Archaeol. Sci. 38:2 (2011), 438–451, 10.1016/j.jas.2010.09.027.
Florsch, N., Llubes, M., Téreygeol, F., Induced polarization 3D tomography of an archaeological direct reduction slag heap. Near Surf. Geophys. 10:6 (2012), 567–574, 10.3997/1873-0604.2012042.
Fraga, Cavalcante, L. H, Schamper, C., Noël, C., Guérin, R., Rejiba, F., Geometrical characterization of urban fill by integrating the multi‐receiver electromagnetic induction method and electrical resistivity tomography: a case study in Poitiers, France. Eur. J. Soil Sci. 70:5 (2019), 1012–1024.
Grohol, M., Veeh, C., DG GROW, and European Commission. Study on the Critical Raw Materials for the EU 2023 Final Report., 2023 https://single-market-economy.ec.europa.eu/system/files/2023-03/Study%202023%20CRM%20Assessment.pdf.
Günther, T., Rücker, C., Spitzer, K., Three-dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. Geophys. J. Int. 166:2 (2006), 506–517.
Hermans, T., Irving, J., Facies discrimination with ERT using a probabilistic methodology: effect of sensitivity and regularization. Near Surf. Geophys. 15 (2017), 13–25.
Inzoli, S., Giudici, M., Huisman, J.A., Estimation of sediment texture from spectral induced polarisation data using cluster and principal component analysis. Near Surf. Geophys. 14:5 (2016), 433–447, 10.3997/1873-0604.2016033.
Isunza Manrique, I., David, C., Nguyen, F., Hermans, T., Quantitative interpretation of geoelectric inverted data with a robust probabilistic approach. Geophysics 88:3 (2023), 73–88, 10.1190/geo2022-0133.1.
Izydorczyk, G., Mikula, K., Skrzypczak, D., Moustakas, K., Witek-Krowiak, A., Chojnacka, K., Potential environmental pollution from copper metallurgy and methods of management. Environ. Res., 197, 2021, 111050, 10.1016/j.envres.2021.111050.
Johansson, S., Lindskog, A., Fiandaca, G., Dahlin, T., Spectral induced polarization of limestones: time domain field data, frequency domain laboratory data and physicochemical rock properties. Geophys. J. Int. 220:2 (2020), 928–950, 10.1093/gji/ggz504.
Lavoué, F., van der Krak, J., Rings, J., André, F., Moghadas, D., Huisman, J.A., Lambot, S., Weiherrnüller, L., Vanderborght, J., Vereecken, H., Electromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography. Near Surf. Geophys. 8 (2010), 553–561.
Lévy, L., Maurya, P.K., Byrdina, S., Vandemeulebrouck, J., Sigmundsson, F., Árnason, K., Ricci, T., et al. Electrical resistivity tomography and time-domain induced polarization field investigations of geothermal areas at Krafla, Iceland: comparison to borehole and laboratory frequency-domain electrical observations. Geophys. J. Int. 218:3 (2019), 1469–1489, 10.1093/gji/ggz240.
Lysdahl, A.K., Christensen, C.W., Pfaffhuber, A.A., Vöge, M., Andresen, L., Skurdal, G.H., Panzner, M., Integrated bedrock model combining airborne geophysics and sparse drillings based on an artificial neural network. Eng. Geol., 297, 2022, 106484, 10.1016/j.enggeo.2021.106484.
Machiels, L., Dinu, G., Onisei, L., Ku, Leuven, NEMO Closing Workshop to Present Key Results to Wide Group of Stakeholders. 2022.
Martin, T., Günther, T., Weller, A., Kuhn, K., Classification of slag material by spectral induced polarization laboratory and field measurements. J. Appl. Geophys., 194, 2021, 104439.
Martin, T., Kuhn, K., Günther, T., Kniess, R., Geophysical exploration of a historical stamp mill dump for the volume estimation of valuable residues. J. Environ. Eng. Geophys. 25:2 (2020), 275–286, 10.2113/JEEG19-080.
Martínez Cortizas, A., López-Merino, L., Bindler, R., Mighall, T., Kylander, M.E., Early atmospheric metal pollution provides evidence for Chalcolithic/Bronze Age mining and metallurgy in southwestern Europe. Sci. Total Environ. 545 (2016), 398–406, 10.1016/j.scitotenv.2015.12.078.
Martínez, J., Rey, J., Sandoval, S., Hidalgo, M.C., Mendoza, R., Geophysical prospecting using ERT and IP techniques to locate galena veins. Rem. Sens., 11(24), 2019, 2923, 10.3390/rs11242923.
Mendecki, M.J., Warchulski, R., Szczuka, M., Środek, D., Pierwoła, J., Geophysical and petrological studies of the former lead smelting waste dump in Sławków, Poland. J. Appl. Geophys., 179, 2020, 104080, 10.1016/j.jappgeo.2020.104080.
Moghadas, D., Badorreck, A., Machine learning to estimate soil moisture from geophysical measurements of electrical conductivity. Near Surf. Geophys. 17:2 (2019), 181–195, 10.1002/nsg.12036.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12:85 (2011), 2825–2830.
Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R., Nelson, P.H., Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 43:3 (1978), 588–609, 10.1190/1.1440839.
Qi, Y., A, Soueid, A., Revil, A., Ghorbani, A., Abdulsamad, F., Florsch, N., Bonnenfant, J., Induced polarization response of porous media with metallic particles — Part 7: Detection and quantification of buried slag heaps. Geophysics 83:5 (2018), E277–E291, 10.1190/geo2017-0760.1.
Reback, J., McKinney, W., Van Den Bossche, J., Augspurger, T., Cloud, P., Klein, A., Hawkins, S., Roeschke, M., Tratner, J., et al. Pandas-Dev/Pandas: Pandas 1.0. 5. 2020, Zenodo.
Revil, A., Vaudelet, P., Su, Z., Chen, R., Induced polarization as a tool to assess mineral deposits: a review. Minerals, 12(571), 2022, 10.3390/min12050571.
Rey, J., Martínez, J., Hidalgo, M.C., Mendoza, R., Sandoval, S., Assessment of tailings ponds by a combination of electrical (ERT and IP) and hydrochemical techniques (Linares, Southern Spain). Mine Water Environ. 40:1 (2021), 298–307, 10.1007/s10230-020-00709-3.
Scott, D.W., Multivariate Density Estimation: Theory, Practice, and Visualization. 1992, John Wiley & Sons.
Sethurajan, M., van Hullebusch, E.D., Nancharaiah, Y.V., Biotechnology in the management and resource recovery from metal bearing solid wastes: recent advances. J. Environ. Manag. 211 (2018), 138–153, 10.1016/j.jenvman.2018.01.035.
Slater, L., Binley, A.M., Daily, W., Johnson, R., Cross-hole electrical imaging of a controlled saline tracer injection. J. Appl. Geophys. 44:2 (2000), 85–102.
Sullivan, C., Kaszynski, A., PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). J. Open Source Softw., 4(37), 2019, 1450.
Van De Vijver, E., Isunza Manrique, I., Bobe, C., Caterina, D., Hermans, T., Wille, E., Nguyen, F., Geophysics in Support of Dynamic Landfill Management: Moving beyond the Challenges: First International Meeting for Applied Geoscience & Energy. 2021, 10.1190/segam2021-3594435.1 SEG/AAPG/SEPM, Expanded Abstracts.
Van Hoorde, M., Hermans, T., Dumont, G., Nguyen, F., 3D electrical resistivity tomography of karstified formations using cross-line measurements. Eng. Geol. 220 (2017), 123–132, 10.1016/j.enggeo.2017.01.028.
Vareda, J.P., Valente, A.J.M., Durães, L., Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J. Environ. Manag. 246 (2019), 101–118, 10.1016/j.jenvman.2019.05.126.
Vásconez-Maza, M.D., Martínez-Segura, M.A., Bueso, M.C., Faz, Á., García-Nieto, M. C.a, Gabarrón, M., Acosta, J.A., Predicting spatial distribution of heavy metals in an abandoned phosphogypsum pond combining geochemistry, electrical resistivity tomography and statistical methods. J. Hazard Mater. 374 (2019), 392–400, 10.1016/j.jhazmat.2019.04.045.
Vásconez-Maza, M.D., Bueso, M.C., Faz, A., Acosta, J.A., Martínez-Segura, M.A., Assessing the behaviour of heavy metals in abandoned phosphogypsum deposits combining electrical resistivity tomography and multivariate analysis. J. Environ. Manag., 278, 2021, 111517, 10.1016/j.jenvman.2020.111517.
Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17:3 (2020), 261–272, 10.1038/s41592-019-0686-2.
Vollprecht, D., Bobe, C., Stiegler, R., Van De Vijver, E., Wolfsberger, T., Küppers, B., Scholger, R., Relating magnetic properties of municipal solid waste constituents to iron content: implications for enhanced landfill mining. Detritus 8 (2019), 31–46.
Whiteley, J.S., Watlet, A., Uhlemann, S., Wilkinson, P., Boyd, J.P., Jordan, C., Kendall, J.M., Chambers, J.E., Rapid characterisation of landslide heterogeneity using unsupervised classification of electrical resistivity and seismic refraction surveys. Eng. Geol., 290, 2021, 106189, 10.1016/j.enggeo.2021.106189.
Zhang, Y., Wei, L., Lu, Q., Zhong, Y., Yuan, Z., Wang, Z., Li, Z., Y, Yang, Y., Mapping soil available copper content in the mine tailings pond with combined simulated annealing deep neural network and UAV hyperspectral images. Environ. Pollut., 320, 2023, 120962.
Žibret, G., Bruno, L., Mendez, A.-M., Cormio, C., Sinnett, D., Cleall, P., Szabó, K., Carvalho, M.T., National mineral waste databases as an information source for assessing material recovery potential from mine waste, tailings and metallurgical waste. Minerals, 10(5), 2020, 446, 10.3390/min10050446.
Zimmermann, E., Kemna, A., Berwix, J., Glaas, W., Münch, H.M., Huismann, J.A., A high-accuracy impedance spectrometer for measuring sediments with low polarizability. Meas. Sci. Technol., 19, 2008, 10.1088/0957-0233/19/10/105603.