Abstract :
[en] Hyperhydricity of micropropagated shoots, formerly called vitrification, undoubtedly results from growth and culture conditions, subjectively reputated as stressing factors: wounding, infiltration of soft culture medium, generally of a high ionic strength, rich in nitrogen and in growth regulators in a special balance, in a humid and gaseous confined atmosphere. Stress is (objectively) defined as a disruption of homeostasis resulting from a constraint escaping the usual flexibility of metabolism. It induces another temporary (reversible) or definitive (irreversible) thermodynamic physiological state. The state-change concept developed by Strasser (1988) and Strasser and Tsimilli-Michael (2001) is applicable to the phenomenon of hyperhydricity. An appraisal of the redox capacities of hyperhydrated shoots together with a study of some enzymic activities that catalyse pentose phosphate and glycolytic pathways has indeed shown that such shoots have evolved towards a temporary state of lower differentiation or a juvenile state with a sufficient activity to survive and to defend themselves.
Scopus citations®
without self-citations
165