NIR; Near-infrared handheld device; PLSR; environmental effect; in-field analysis; model transfer; near-infrared; partial least squares regression; screening devices; substandard and falsified medicines; transmission
Abstract :
[en] Near-infrared (NIR) spectroscopy is actually a well-established technique that demonstrates its performance in the frame of detection of poor-quality medicines. The use of low-cost handheld NIR spectrophotometers in low-resource contexts can allow an inexpensive and more rapid detection compared to laboratory methods. Considering these points, it was decided to develop, validate, and transfer methods for the quantification of ciprofloxacin and metronidazole tablet samples using a NIR handheld spectrophotometer in transmission mode (NIR-M-T1) coupled to chemometrics such as partial least squares regression (PLSR) algorithm. All of the models were validated with the total error approach using an accuracy profile as a decision tool, with ±10% specifications and a risk α set at 5%. Quantitative PLSR models were first validated in Belgium, which is a temperate oceanic climate zone. Second, they were transferred to Cameroon, a tropical climate zone, where issues regarding the prediction of new validation series with the initial models were highlighted. Two augmentation strategies were then envisaged to make the predictive models robust to environmental conditions, incorporating the potential variability linked to environmental effects in the initial calibration sets. The resulting models were then used for in-field analysis of ciprofloxacin and metronidazole tablet samples collected in three cities in Cameroon. The contents results obtained for each sample with the two strategies were close and not statistically different. Nevertheless, the first one is easier to implement and the second is the best regarding model diagnostic measures and accuracy profiles. Two samples were found to be noncompliant in terms of content, and these results were confirmed using high-performance liquid chromatography taken as the reference method.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Waffo Tchounga, Christelle Ange ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM) ; Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
Marini, Djang'eing'a; Department of Pharmacy, University of Liège (ULiège), CIRM, ViBra-Santé hub, Laboratory of Pharmaceutical Analytical Chemistry, Liège, Belgium
Nnanga Nga, Emmanuel; Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
Ciza Hamuli, Patient; Faculty of Pharmaceutical Sciences, University of Kinshasa, Lemba, Kinshasa, Democratic Republic of the Congo
Ngono Mballa, Rose; Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon ; Laboratoire National de Contrôle des Médicaments et Expertise (LANACOME), Yaoundé, Cameroon
Hubert, Philippe ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Ziemons, Eric ; Université de Liège - ULiège > Département de pharmacie
Sacre, Pierre-Yves ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Language :
English
Title :
In-Field Implementation of Near-Infrared Quantitative Methods for Analysis of Medicines in Tropical Environments.
Publication date :
21 September 2023
Journal title :
Applied Spectroscopy
ISSN :
0003-7028
Pages :
37028231201653
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ARES - Académie de Recherche et d'Enseignement Supérieur
World Health Organization (WHO). Dans les Pays en Développement, 1 Médicament sur 10 est de Qualité Inférieure ou Falsifié. 2017. https://www.who.int/fr/news/item/28-11-2017-1-in-10-medical-products-in-developing-countries-is-substandard-or-falsified [accessed Sep 8 2022].
Zabala G.A. Bellingham K. Vidhamaly V. Boupha P., et al. “Substandard and Falsified Antibiotics: Neglected Drivers of Antimicrobial Resistance?” BMJ Glob. Health. 2022. 7(8): 8587. 10.1136/bmjgh-2022-008587
Vidhamaly V. Bellingham K. Newton P.N. Caillet C.. “The Quality of Veterinary Medicines and their Implications for One Health”. BMJ Glob. Health. 2022. 7(8): 8564. 10.1136/bmjgh-2022-008564
Ozawa S. Chen H.-H. Lee Y.-F.A. Higgins C.R. Yemeke T.T.. “Characterizing Medicine Quality by Active Pharmaceutical Ingredient Levels: A Systematic Review and Meta-Analysis Across Low- and Middle-Income Countries”. Am. J. Trop. Med. Hyg. 2022. 106(6): 1778–1790. 10.4269/ajtmh.21-1123
World Health Organization (WHO). A Study on the Public Health and Socioeconomic Impact of Substandard and Falsified Medical Products. https://www.who.int/publications/i/item/9789241513432 [accessed Jul 28 2023].
Wada Y.H. Abdulrahman A. Ibrahim Muhammad M. Owanta V.C., et al. “Falsified and Substandard Medicines Trafficking: A Wakeup Call for the African Continent”. Public Health Pract. (Oxf.). 2022. 3: 100240. 10.1016/j.puhip.2022.100240
Do N.T. Boupha P. Newton P.N. Caillet C.. “The Quality of Antiretroviral Medicines: An Uncertain Problem”. BMJ Glob. Health. 2023. 8(3): e011423. 10.1136/bmjgh-2022-011423
Tabernero P. Newton P.N.. “Estimating the Prevalence of Poor-Quality Anti-TB Medicines: A Neglected Risk for Global TB Control and Resistance”. BMJ Glob. Health. 2023. 8(7): e012039. 10.1136/bmjgh-2023-012039
Waffo Tchounga C.A. Sacré P.-Y. Ciza P.H. Ngono R., et al. “Prevalence of Poor-Quality Ciprofloxacin and Metronidazole Tablets in Three Cities in Cameroon”. Am. J. Trop. Med. Hyg. 2022. 108(2): 403–411. 10.4269/ajtmh.22-0221
Newton P.N. Bond K.C.. “On Behalf of the Oxford Statement-Signatories, Global Access to Quality-Assured Medical Products: The Oxford Statement and Call to Action”. Lancet Glob. Health. 2019. 7(12): e1609–e1611. 10.1016/S2214-109X(19)30426-7
Höllein L. Kaale E. Mwalwisi Y.H. Schulze M.H. Holzgrabe U.. “Routine Quality Control of Medicines in Developing Countries: Analytical Challenges, Regulatory Infrastructures and the Prevalence of Counterfeit Medicines in Tanzania”. TrAC, Trends Anal. Chem. 2016. 76: 60–70. 10.1016/j.trac.2015.11.009
Béc K.B. Grabska J. Huck C.W.. “Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives”. Foods. 2022. 11(10): 1465. 10.3390/foods11101465
Deidda R. Sacré P.Y. Clavaud M. Coïc L., et al. “Vibrational Spectroscopy in Analysis of Pharmaceuticals: Critical Review of Innovative Portable and Handheld NIR and Raman Spectrophotometers”. TrAC, Trends Anal. Chem. 2019. 114: 251–259. 10.1016/j.trac.2019.02.035
Dégardin K. Guillemain A. Guerreiro N.V. Roggo Y.. “Near Infrared Spectroscopy for Counterfeit Detection Using a Large Database of Pharmaceutical Tablets”. J. Pharm. Biomed. Anal. 2016. 128: 89–97. 10.1016/j.jpba.2016.05.004
Wiedemair V. Mair D. Held C. Huck C.W.. “Investigations into the Use of Handheld Near-Infrared Spectrometer and Novel Semi-Automated Data Analysis for the Determination of Protein Content in Different Cultivars of Panicum miliaceum L”. Talanta. 2019. 205: 120115. 10.1016/j.talanta.2019.120115
Guillemain A. Dégardin K. Roggo Y.. “Performance of NIR Handheld Spectrometers for the Detection of Counterfeit Tablets”. Talanta. 2017. 165: 632–640. 10.1016/j.talanta.2016.12.063
Vickers S. Bernier M. Zambrzycki S. Fernandez F.M., et al. “Field Detection Devices for Screening the Quality of Medicines: A Systematic Review”. BMJ Glob. Health. 2018. 3(4): e000725. 10.1136/bmjgh-2018-000725
Caillet C. Vickers S. Vidhamal V. Boutsamay K., et al. “Evaluation of Portable Devices for Medicine Quality Screening: Lessons Learnt, Recommendations for Implementation, and Future Priorities”. PLoS Med. 2021. 18(9): e1003747. 10.1371/journal.pmed.1003747
Ciza P.H. Sacré P.Y. Waffo C. Coïc L. Avohou H., et al. “Comparing the Qualitative Performances of Handheld NIR and Raman Spectrophotometers for the Detection of Falsified Pharmaceutical Products”. Talanta. 2019. 202: 469–478. 10.1016/j.talanta.2019.04.049
Awotunde O. Roseboom N. Cai J. Hayes K. Rajane R., et al. “Discrimination of Substandard and Falsified Formulations from Genuine Pharmaceuticals Using NIR Spectra and Machine Learning”. Anal. Chem. 2022. 94(37): 12586–12594. 10.1021/acs.analchem.2c00998
Waffo Tchounga C.A. Sacré P.Y. Ravinetto R. Lieberman M., et al. “Usefulness of Medicine Screening Tools in the Frame of Pharmaceutical Post-Marketing Surveillance”. PLoS One. 2023. 18(8): e0289865. 10.1371/journal.pone.0289865
Ciza P.H. Sacré P.Y. Kanyonyo M.R. Waffo C.T., et al. “Application of NIR Handheld Transmission Spectroscopy and Chemometrics to Assess the Quality of Locally Produced Antimalarial Medicines in the Democratic Republic of Congo”. Talanta Open. 2021. 3: 100025. 10.1016/j.talo.2020.100025
Ciza P.H. Sacré P.Y. Waffo C. Kimbeni T.M., et al. “Comparison of Several Strategies for the Deployment of a Multivariate Regression Model on Several Handheld NIR Instruments. Application to the Quality Control of Medicines”. J. Pharm. Biomed. Anal. 2022. 215: 114755. 10.1016/j.jpba.2022.114755
Wang W. Keller M.D. Baughman T. Wilson B.K.. “Evaluating Low-Cost Optical Spectrometers for the Detection of Simulated Substandard and Falsified Medicines”. Appl. Spectrosc. 2020. 74(3): 323–333. 10.1177/0003702819877422
Council of Europe (COE). European Pharmacopoeia. https://www.edqm.eu/en/european-pharmacopoeia-ph.-eur.-11th-edition [accessed Jan 3 2023].
Bertinetto C.G. Schoot M. Dingemans M. Meeuwsen W., et al. “Influence of Measurement Procedure on the Use of a Handheld NIR Spectrophotometer”. Food Res. Int. 2022. 161: 111836. 10.1016/j.foodres.2022.111836
Workman J.J.. “A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy”. Appl. Spectrosc. 2018. 72(3): 340–365. 10.1177/0003702817736064
Eady M. Caison J. Jinnah M. Jenkins D.. “A Rapid Qualitative Screening Method for Isoniazid Tablets Using Handheld NIR Spectrometers in Two Countries”. Molecules. 2023. 28(12): 4758. 10.3390/molecules28124758
Xu X. Xie L. Ying Y.. “Factors Influencing Near Infrared Spectroscopy Analysis of Agro-Products: A Review”. Front. Agr. Sci. Eng. 2019. 6(2): 105–115. 10.15302/J-FASE-2019255
Chauchard F. Roger J.M. Bellon-Maurel V.. “Correction of the Temperature Effect on Near Infrared Calibration: Application to Soluble Solid Content Prediction”. J. Near Infrared Spectrosc. 2004. 12(3): 199–205. 10.1255/jnirs.427
Roger J.M. Chauchard F. Bellon-Maurel V.. “EPO–PLS External Parameter Orthogonalisation of PLS Application to Temperature-Independent Measurement of Sugar Content of Intact Fruits”. Chemom. Intell. Lab. Syst. 2003. 66(2): 191–204. 10.1016/S0169-7439(03)00051-0
Swierenga H. Wülfert F. De Noord O.E. De Weijer A.P., et al. “Development of Robust Calibration Models in Near Infra-Red Spectrometric Applications”. Anal. Chem. Acta. 2000. 411(1–2): 121–135. 10.1016/S0003-2670(00)00718-2
Werk R. Schneider L.. “Ciprofloxacin in Combination with Metronidazole”. Infection. 1988. 16(4): 257–260. 10.1007/BF01650774
Sakira A.K. Mees C. De Braekeleer K. Delporte C., et al. “Determination of the Quality of Metronidazole Formulations by Near-Infrared Spectrophotometric Analysis”. Talanta Open. 2021. 3: 100027. 10.1016/j.talo.2020.100027
Fuenffinger N. Arzhantsev S. Gryniewicz-Ruzicka C.. “Classification of Ciprofloxacin Tablets Using Near-Infrared Spectroscopy and Chemometric Modeling”. Appl. Spectrosc. 2017. 71(8): 1927–1937. 10.1177/0003702817699624
Assi S. Arafat B. Lawson-Wood K. Robertson I.. “Authentication of Antibiotics Using Portable Near-Infrared Spectroscopy and Multivariate Data Analysis”. Appl. Spectrosc. 2021. 75(8): 434–444. 10.1177/0003702820958081
Peel M.C. Finlayson B.L. McMahon T.A.. “Updated World Map of the Köppen-Geiger Climate Classification”. Hydrol. Earth Syst. Sci. 2007. 11(5): 1633–1644. 10.5194/hess-11-1633-2007
L’ Institut Royal Météorologique (IRM). Climatogrammes dans le Monde. https://www.meteo.be/fr/climat/climats-dans-le-monde/climatogrammes-dans-le-monde [accessed Sep 22 2022].
U.S. Food and Drug Administration (FDA). Development and Submission of Near Infrared Analytical Procedures Guidance for Industry. 2021. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-and-submission-near-infrared-analytical-procedures [accessed Sep 22 2022].
De Bleye C. Chavez P.F. Mantanus J. Marini R., et al. “Critical Review of Near-Infrared Spectroscopic Methods Validations in Pharmaceutical Applications”. J. Pharm. Biomed. Anal. 2012. 69: 125–132. 10.1016/j.jpba.2012.02.003
International Conference on Harmonisation (ICH). Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline Validation of Analytical Procedures: Text and Methodology Q2(R1). https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf [accessed Sep 22 2022].
Wülfert F. Kok W.T. Smilde A.K.. “Influence of Temperature on Vibrational Spectra and Consequences for the Predictive Ability of Multivariate Models”. Anal. Chem. 1998. 70(9): 1761–1767. 10.1021/ac9709920
Bertrand D. Dufour E.. “Spectroscopie de L'Eau”. In: Bertrans D. Dufour E., editors. La Spectroscopie Infrarouge et ses Applications Analytiques. Paris: Editions Tec et Doc, 2006. Pp. 93–105.
Ricker E.B. Nuxoll E.. “Synergistic Effects of Heat and Antibiotics on Pseudomonas aeruginosa Biofilms”. Biofouling. 2017. 33(10): 855–866. 10.1080/08927014.2017.1381688
Wu Y. Fassihi R.. “Stability of Metronidazole, Tetracycline HCl and Famotidine Alone and in Combination”. Int J Pharm. 2005. 290(1–2): 1–13. 10.1016/j.ijpharm.2004.10.015
Thygesen L.G. Lundqvist S.-O.. “NIR Measurement of Moisture Content in Wood under Unstable Temperature Conditions. Part 2. Handling Temperature Fluctuations”. J. Near Infrared Spectrosc. 2000. 8(3): 191–199. 10.1255/jnirs.277
Hauk C. Hagen C.N. Heide L.. “Identification of Substandard and Falsified Medicines: Influence of Different Tolerance Limits and Use of Authenticity Inquiries”. Am. J. Trop. Med. Hyg. 2021. 104(5): 1936–1945. 10.4269/ajtmh.20-1612
Gnegel G. Häfele-Abah C. Neci R. Alladjaba M., et al. “Surveillance for Substandard and Falsified Medicines by Local Faith-Based Organizations in 13 Low- and Middle-Income Countries Using the GPHF Minilab”. Sci. Rep. 2022. 12(1): 13095. 10.1038/s41598-022-17123-0
Feinberg M.. Labo-Stat: Guide de Validation des Méthodes D’Analyse. Paris: Tec et Doc, 2009. Pp. 311–334.
Coppey F. Bécue A. Sacré P.Y. Ziemons E.M., et al. “Providing Illicit Drugs Results in Five Seconds Using Ultra-Portable NIR Technology: An Opportunity for Forensic Laboratories to Cope with the Trend Toward the Decentralization of Forensic Capabilities”. Forensic Sci. Int. 2020. 317: 110498. 10.1016/j.forsciint.2020.110498