[en] Mathematical modelling studies have shown that repetitive screening can be used to mitigate SARS-CoV-2 transmission in primary schools while keeping schools open. However, not much is known about how transmission progresses within schools and whether there is a risk of importation to households. During the academic year 2020-2021, a prospective surveillance study using repetitive screening was conducted in a primary school and associated households in Liège (Belgium). SARS-CoV-2 screening was performed via throat washing either once or twice a week. We used genomic and epidemiological data to reconstruct the observed school outbreaks using two different models. The outbreaker2 model combines information on the generation time and contact patterns with a model of sequence evolution. For comparison we also used SCOTTI, a phylogenetic model based on the structured coalescent. In addition, we performed a simulation study to investigate how the accuracy of estimated positivity rates in a school depends on the proportion of a school that is sampled in a repetitive screening strategy. We found no difference in SARS-CoV-2 positivity between children and adults and children were not more often asymptomatic compared to adults. Both models for outbreak reconstruction revealed that transmission occurred mainly within the school environment. Uncertainty in outbreak reconstruction was lowest when including genomic as well as epidemiological data. We found that observed weekly positivity rates are a good approximation to the true weekly positivity rate, especially in children, even when only 25% of the school population is sampled. These results indicate that, in addition to reducing infections as shown in modelling studies, repetitive screening in school settings can lead to a better understanding of the extent of transmission in schools during a pandemic and importation risk at the community level.
Disciplines :
Immunology & infectious disease
Author, co-author :
Kremer, Cécile ; Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium. Electronic address: cecile.kremer@uhasselt.be
Torneri, Andrea; Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
Libin, Pieter J K; Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium, Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, Brussels, Belgium, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
Meex, Cécile ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Hayette, Marie-Pierre ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Bontems, Sébastien ; Centre Hospitalier Universitaire de Liège - CHU > > Service de microbiologie clinique
Durkin, Keith William ; Centre Hospitalier Universitaire de Liège - CHU > > Service de génétique
Artesi, Maria ; Centre Hospitalier Universitaire de Liège - CHU > > Service de génétique
Bours, Vincent ; Centre Hospitalier Universitaire de Liège - CHU > > Service de génétique
Lemey, Philippe; Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
Darcis, Gilles ; Centre Hospitalier Universitaire de Liège - CHU > > Service des maladies infectieuses - médecine interne
Hens, Niel; Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium, Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
Meuris, Christelle ; Centre Hospitalier Universitaire de Liège - CHU > > Service des maladies infectieuses - médecine interne
Abbas, M., Cori, A., Cordey, S., Laubscher, F., Robalo Nunes, T., Myall, A., Salamun, J., Huber, P., Zekry, D., Prendki, V., Iten, A., Vieux, L., Sauvan, V., Graf, C.E., Harbarth, S., Reconstruction of transmission chains of SARS-CoV-2 amidst multiple outbreaks in a geriatric acute-care hospital: a combined retrospective epidemiological and genomic study. Schiffer, J.T., Garrett, W.S., Opatowski, L., Pham, T., (eds.) ELife 2050-084X, 11, 2022, e76854, 10.7554/eLife.76854.
Aksamentov, I., Roemer, C., Hodcroft, E.B., Neher, R.A., Nextclade: clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw., 6(67), 2021, 3773, 10.21105/joss.03773.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A., Drummond, A.J., BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol., 10(4), 2014, e1003537.
Buonanno, G., Stabile, L., Morawska, L., Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environ. Int., 141, 2020, 105794.
Callies, M., Kabouche, I., Desombere, I., Merckx, J., Roelants, M., Vermeulen, M., Duysburgh, E., Measures for infection prevention and control of SARS-CoV-2 in Belgian schools between december 2020 and june 2021: A prospective cohort study. MedRxiv, 2022, 10.1101/2022.04.12.22273722.
Campbell, F., Cori, A., Ferguson, N., Jombart, T., Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data. PLoS Comput. Biol. 15:3 (2019), 1–20, 10.1371/journal.pcbi.1006930.
Campbell, F., Didelot, X., Fitzjohn, R., Ferguson, N., Cori, A., Jombart, T., outbreaker2: A modular platform for outbreak reconstruction. BMC Bioinformatics 19:11 (2018), 1–8.
Campbell, F., Strang, C., Ferguson, N., Cori, A., Jombart, T., When are pathogen genome sequences informative of transmission events?. PLoS Pathog., 14(2), 2018, e1006885.
Chang, D., Mo, G., Yuan, X., Tao, Y., Peng, X., Wang, F.-S., Xie, L., Sharma, L., Dela Cruz, C.S., Qin, E., Time kinetics of viral clearance and resolution of symptoms in novel coronavirus infection. Am. J. Respir. Crit. Care Med. 201:9 (2020), 1150–1152.
Colosi, E., Bassignana, G., Contreras, D.A., Poirier, C., Boëlle, P.-Y., Cauchemez, S., Yazdanpanah, Y., Lina, B., Fontanet, A., Barrat, A., et al. Screening and vaccination against COVID-19 to minimise school closure: a modelling study. Lancet Infect. Dis., 2022.
Davies, N.G., Klepac, P., Liu, Y., Prem, K., Jit, M., Eggo, R.M., Age-dependent effects in the transmission and control of COVID-19 epidemics. Nature Med. 26:8 (2020), 1205–1211.
De Maio, N., Wu, C.-H., O'Reilly, K.M., Wilson, D., New routes to phylogeography: A Bayesian structured coalescent approximation. PLoS Genet., 11(8), 2015, e1005421.
De Maio, N., Wu, C.-H., Wilson, D.J., SCOTTI: efficient reconstruction of transmission within outbreaks with the structured coalescent. PLoS Comput. Biol., 12(9), 2016, e1005130.
Departement Onderwijs en Vorming, N., Vlaams onderwijs in cijfers 2021–2022. 2023 https://www.vlaanderen.be/publicaties/vlaams-onderwijs-in-cijfers.
Firestone, S.M., Hayama, Y., Bradhurst, R., Yamamoto, T., Tsutsui, T., Stevenson, M.A., Reconstructing foot-and-mouth disease outbreaks: A methods comparison of transmission network models. Sci. Rep. 9:1 (2019), 1–12.
Freed, N.E., Vlkova, M., Faisal, M.B., Silander, O.K., Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and oxford nanopore rapid barcoding. Biol. Methods Protoc., 5, 2020, a014, 10.1093/biomethods/bpaa014.
Gorgels, K.M., van Alphen, L.B., van der Veer, B.M., Hackert, V.H., Hensels, A.Y., den Heijer, C.D., Dingemans, J., Savelkoul, P.H., Hoebe, C.J., Increased transmissibility of SARS-CoV-2 alpha variant (B. 1.1. 7) in children: three large primary school outbreaks revealed by whole genome sequencing in the netherlands. BMC Infect. Dis. 22:1 (2022), 1–10.
He, X., Lau, E.H., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y.C., Wong, J.Y., Guan, Y., Tan, X., et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Med. 26:5 (2020), 672–675.
Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S., UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 0737-4038, 35(2), 2017, 518–522, 10.1093/molbev/msx281 arXiv:https://academic.oup.com/mbe/article-pdf/35/2/518/24367824/msx281.pdf.
Hoang, T., Coletti, P., Melegaro, A., Wallinga, J., Grijalva, C.G., Edmunds, J.W., Beutels, P., Hens, N., A systematic review of social contact surveys to inform transmission models of close-contact infections. Epidemiology (Cambridge, Mass.), 30(5), 2019, 723.
Hufsky, F., Lamkiewicz, K., Almeida, A., Aouacheria, A., Arighi, C., Bateman, A., Baumbach, J., Beerenwinkel, N., Brandt, C., Cacciabue, M., Chuguransky, S., Drechsel, O., Finn, R.D., Fritz, A., Fuchs, S., Hattab, G., Hauschild, A.-C., Heider, D., Hoffmann, M., Hölzer, M., Hoops, S., Kaderali, L., Kalvari, I., von Kleist, M., Kmiecinski, R., Kühnert, D., Lasso, G., Libin, P., List, M., Löchel, H.F., Martin, M.J., Martin, R., Matschinske, J., McHardy, A.C., Mendes, P., Mistry, J., Navratil, V., Nawrocki, E.P., O'Toole, A.N., Ontiveros-Palacios, N., Petrov, A.I., Rangel-Pineros, G., Redaschi, N., Reimering, S., Reinert, K., Reyes, A., Richardson, L., Robertson, D.L., Sadegh, S., Singer, J.B., Theys, K., Upton, C., Welzel, M., Williams, L., Marz, M., Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief. Bioinform. 1477-4054, 22(2), 2020, 642–663, 10.1093/bib/bbaa232 arXiv:https://academic.oup.com/bib/article-pdf/22/2/642/36654876/bbaa232.pdf.
Jiang, L., Tang, K., Levin, M., Irfan, O., Morris, S.K., Wilson, K., Klein, J.D., Bhutta, Z.A., COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect. Dis. 20:11 (2020), e276–e288.
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., Jermiin, L.S., ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 2017, 10.1038/nmeth.4285 URL https://pubmed.ncbi.nlm.nih.gov/28481363/.
Kistler, K.E., Huddleston, J., Bedford, T., Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. BioRxiv, 2021, 10.1101/2021.09.11.459844 arXiv:https://www.biorxiv.org/content/early/2021/10/15/2021.09.11.459844.full.pdf, URL https://www.biorxiv.org/content/early/2021/10/15/2021.09.11.459844.
Libin, P.J.K., Deforche, K., Abecasis, A.B., Theys, K., VIRULIGN: fast codon-correct alignment and annotation of viral genomes. Bioinformatics 1367-4803, 35(10), 2018, 1763–1765, 10.1093/bioinformatics/bty851 arXiv:https://academic.oup.com/bioinformatics/article-pdf/35/10/1763/28604627/bty851.pdf.
Libin, P.J., Willem, L., Verstraeten, T., Torneri, A., Vanderlocht, J., Hens, N., Assessing the feasibility and effectiveness of household-pooled universal testing to control COVID-19 epidemics. PLoS Comput. Biol., 17(3), 2021, e1008688.
Liu, Q.-H., Zhang, J., Peng, C., Litvinova, M., Huang, S., Poletti, P., Trentini, F., Guzzetta, G., Marziano, V., Zhou, T., et al. Model-based evaluation of alternative reactive class closure strategies against COVID-19. Nature Commun. 13:1 (2022), 1–10.
Lopez-Leon, S., Wegman-Ostrosky, T., del Valle, N.C.A., Perelman, C., Sepulveda, R., Rebolledo, P.A., Cuapio, A., Villapol, S., Long COVID in children and adolescents: A systematic review and meta-analyses. MedRxiv, 2022.
Lorthe, E., Bellon, M., Michielin, G., Berthelot, J., Zaballa, M.-E., Pennacchio, F., Bekliz, M., Laubscher, F., Arefi, F., Perez-Saez, J., et al. Epidemiological, virological and serological investigation of a SARS-CoV-2 outbreak (alpha variant) in a primary school: A prospective longitudinal study. Plos One, 17(8), 2022, e0272663.
Manica, M., Poletti, P., Deandrea, S., Mosconi, G., Ancarani, C., Lodola, S., Guzzetta, G., d'Andrea, V., Marziano, V., Zardini, A., Trentini, F., Odone, A., Tirani, M., Ajelli, M., Merler, S., Estimating SARS-CoV-2 transmission in educational settings: A retrospective cohort study. Influenza Other Respiratory Viruses, 2022, 1–7, 10.1111/irv.13049.
Mensah, A.A., Sinnathamby, M., Zaidi, A., Coughlan, L., Simmons, R., Ismail, S.A., Ramsay, M.E., Saliba, V., Ladhani, S.N., SARS-CoV-2 infections in children following the full re-opening of schools and the impact of national lockdown: prospective, national observational cohort surveillance, july-december 2020, England. J. Infect. 82:4 (2021), 67–74.
Meuris, C., Kremer, C., Geerinck, A., Locquet, M., Bruyére, O., Defêche, J., Meex, C., Hayette, M.-P., Duchene, L., Dellot, P., Azarzar, S., Maréchal, N., Sauvage, A.-S., Frippiat, F., Giot, J.-B., Léonard, P., Fombellida, K., Moutschen, M., Durkin, K., Artesi, M., Bours, V., Faes, C., Hens, N., Darcis, G., Transmission of SARS-CoV-2 After COVID-19 Screening and Mitigation Measures for Primary School Children Attending School in Liége, Belgium. JAMA Netw. Open 2574-3805, 4(10), 2021, e2128757, 10.1001/jamanetworkopen.2021.28757 arXiv:https://jamanetwork.com/journals/jamanetworkopen/articlepdf/2784812/meuris_2021_oi_210838_1633035195.09961.pdf.
Mohammad, T., Choudhury, A., Habib, I., Asrani, P., Mathur, Y., Umair, M., Anjum, F., Shafie, A., Yadav, D.K., Hassan, M., et al. Genomic variations in the structural proteins of SARS-CoV-2 and their deleterious impact on pathogenesis: A comparative genomics approach. Front. Cell. Infect. Microbiol., 2021, 951.
Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 0737-4038, 32(1), 2014, 268–274, 10.1093/molbev/msu300 arXiv:https://academic.oup.com/mbe/article-pdf/32/1/268/13171186/msu300.pdf.
Omotoso, O.E., Olugbami, J.O., Gbadegesin, M.A., Assessment of intercontinents mutation hotspots and conserved domains within SARS-CoV-2 genome. Infect. Genet. Evol., 96, 2021, 105097.
Pierce, C.A., Herold, K.C., Herold, B.C., Chou, J., Randolph, A., Kane, B., McFarland, S., Gurdasani, D., Pagel, C., Hotez, P., et al. COVID-19 and children. Science 377:6611 (2022), 1144–1149.
Poletti, P., Tirani, M., Cereda, D., Trentini, F., Guzzetta, G., Sabatino, G., Marziano, V., Castrofino, A., Grosso, F., Del Castillo, G., et al. Association of age with likelihood of developing symptoms and critical disease among close contacts exposed to patients with confirmed SARS-CoV-2 infection in Italy. JAMA Netw. Open, 4(3), 2021, e211085.
Sciensano, P., Prevalence and incidence of antibodies against SARS-CoV-2 in children and school staff an observational sero-prevalence prospective cohort study. 2022 Accessed June 24, 2022, https://www.sciensano.be/sites/default/files/report_seroprev_sars-cov-2_schools_t4_oct2021.pdf.
Shannon, C.E., The mathematical theory of communication. 1963. MD Comput.: Comput. Med. Pract. 14:4 (1997), 306–317.
Sinha, I.P., Harwood, R., Semple, M.G., Hawcutt, D.B., Thursfield, R., Narayan, O., Kenny, S.E., Viner, R., Hewer, S.L., Southern, K.W., COVID-19 infection in children. Lancet Respiratory Med. 8:5 (2020), 446–447.
Southall, E., Holmes, A., Hill, E.M., Atkins, B.D., Leng, T., Thompson, R.N., Dyson, L., Keeling, M.J., Tildesley, M.J., An analysis of school absences in England during the COVID-19 pandemic. BMC Med. 19:1 (2021), 1–14.
Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., Rambaut, A., Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol., 4(1), 2018, vey016.
Sun, K., Wang, W., Gao, L., Wang, Y., Luo, K., Ren, L., Zhan, Z., Chen, X., Zhao, S., Huang, Y., et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science, 371(6526), 2021, eabe2424.
Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 0737-4038, 10(3), 1993, 512–526, 10.1093/oxfordjournals.molbev.a040023 arXiv:https://academic.oup.com/mbe/article-pdf/10/3/512/11168171/2TAMU.PDF.
Torneri, A., Libin, P., Vanderlocht, J., Vandamme, A.-M., Neyts, J., Hens, N., A prospect on the use of antiviral drugs to control local outbreaks of COVID-19. BMC Med. 18:1 (2020), 1–9.
Torneri, A., Willem, L., Colizza, V., Kremer, C., Meuris, C., Darcis, G., Hens, N., Libin, P.J., Controlling SARS-CoV-2 in schools using repetitive testing strategies. Elife, 11, 2022, e75593.
Trunfio, M., Richiardi, L., Alladio, F., Staffilano, E., Longo, B., Venuti, F., Ghisetti, V., Burdino, E., Bonors, S., Vineis, P., et al. Determinants of SARS-CoV-2 contagiousness in household contacts of symptomatic adult index cases. Front. Microbiol., 2022, 694.
Ulyte, A., Radtke, T., Abela, I.A., Haile, S.R., Ammann, P., Berger, C., Trkola, A., Fehr, J., Puhan, M.A., Kriemler, S., Evolution of SARS-CoV-2 seroprevalence and clusters in school children from June 2020 to April 2021: prospective cohort study Ciao Corona. Swiss Med. Wkly., 151, 2021, w30092.
Vlachos, J., Hertegård, E., Svaleryd, H.B., The effects of school closures on SARS-CoV-2 among parents and teachers. Proc. Natl. Acad. Sci., 118(9), 2021.
Walker, A.S., Pritchard, E., House, T., Robotham, J.V., Birrell, P.J., Bell, I., Bell, J.I., Newton, J.N., Farrar, J., Diamond, I., et al. Ct threshold values, a proxy for viral load in community SARS-CoV-2 cases, demonstrate wide variation across populations and over time. Elife, 10, 2021.
Wang, S., Xu, X., Wei, C., Li, S., Zhao, J., Zheng, Y., Liu, X., Zeng, X., Yuan, W., Peng, S., Molecular evolutionary characteristics of SARS-CoV-2 emerging in the United States. J. Med. Virol. 94:1 (2022), 310–317.
Zhou, R., Li, F., Chen, F., Liu, H., Zheng, J., Lei, C., Wu, X., Viral dynamics in asymptomatic patients with COVID-19. Int. J. Infect. Dis. 96 (2020), 288–290.
Zimmerman, K.O., Akinboyo, I.C., Brookhart, M.A., Boutzoukas, A.E., McGann, K.A., Smith, M.J., Maradiaga Panayotti, G., Armstrong, S.C., Bristow, H., Parker, D., et al. Incidence and secondary transmission of SARS-CoV-2 infections in schools. Pediatrics, 147(4), 2021.
Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J., et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N. Engl. J. Med. 382:12 (2020), 1177–1179.