High Throughput sequencing technologies complemented by growers’ perceptions highlight the impact of tomato virome in diversified vegetable farms and a lack of awareness of emerging virus threats
Belgium; grower’s perception; high throughput sequencing; small-scale vegetable farms; tomato; virome; Global and Planetary Change; Food Science; Ecology; Agronomy and Crop Science; Management, Monitoring, Policy and Law; Horticulture
Abstract :
[en] The number of small-scale diversified vegetable growers in industrialized countries has risen sharply over the last 10 years. The risks associated with plant viruses in these systems have been barely studied in Europe, yet dramatic virus emergence events, such as tomato brown fruit rugose virus (ToBRFV), sometimes occur. We developed a methodology that aimed to understand better the implications related to viruses for tomato production in Belgian’s vegetable farms by comparing growers’ perception and the presence of plant-viral-like symptoms (visual inspection) with non-targeting detection of nearly all viruses present in the plants by high throughput sequencing technologies (HTS). Virus presence and impact were interpreted considering the farm’s typology and cultural practices, and the grower’s professional profiles. Overall, the data indicated that most growers have limited understanding of tomato viruses and are not concerned about them. Field observations were correlated to this perception as the prevalence of symptomatic plants was usually lower than 1%. However, important and potentially emergent viruses, mainly transmitted by insects, were detected in several farms. Notably, the presence of these viruses tended to be associated with the number of plant species grown per site (diversity) but not with a higher awareness of the growers regarding plant viral diseases, or a higher number of symptomatic plants. In addition, both HTS and perception analysis underlined the rising incidence and importance of an emergent virus: Physostegia chlorotic mottle virus. This study also revealed a notable lack of knowledge among producers regarding the highly contagious quarantine virus ToBRFV. Overall, the original methodology developed here, involving the integration of two separate fields of study (social science with phytopathology using HTS technologies), could be applied to other crops in other systems to identify emergent risks associated with plant viruses, and can highlight the communication needed with growers to mitigate epidemics. This exploratory investigation provides relevant insights, which, ideally, would be further tested on wider samples to allow finer statistical treatment to be performed.
Disciplines :
Biotechnology
Author, co-author :
Temple, Coline ; Integrated and Urban Plant Pathology Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
Tindale, Sophie; School of Natural and Environmental Sciences, Newcastle University, Newcastle, United Kingdom
Steyer, Stephan; Crops and Forest Health Unit, Walloon Agricultural Research Center (CRA-W), Gembloux, Belgium
Marechal, Kevin ; Modelization and Development Department, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
Massart, Sébastien ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Language :
English
Title :
High Throughput sequencing technologies complemented by growers’ perceptions highlight the impact of tomato virome in diversified vegetable farms and a lack of awareness of emerging virus threats
The authors would like to thank the National Institute of Biology of Slovenia and especially Denis Kutnjak and Mark Paul Selda Rivarez for their help in bioinformatic analysis. We also acknowledge the Phytopathology team of ULiege Gembloux Agro-biotech (Gbx) Laurent Minet (Hortiforum asbl/Center Technique Horticole de Gembloux), and the members of the extension services (Center Interprofessionel Maraicher) for their support and brainstorming effort in designing the survey and the questionnaire. Elisabeth Demonty and Pierre Hellin (Plant Virology Lab, CRA-W) are also thanks for their support in the laboratory analyzes. We are also very grateful to the growers who took the time to reply to the questions, allowed us to access their properties and collect samples. We thank Johan Rollin, Nuria Fontdevila, François Maclot (Gbx), and Sandrine Dury (CIRAD) for their support on analyzing the data and their helped in improving the manuscript.This work was supported by European Union’s Horizon 2020 Research and Innovation program under the Marie Sklodowska-Curie, Grant Agreement no. 813542 and Federal public service, public health, Belgium, Grant Agreement no. RT 18/3 SEVIPLANT 55.
Anderson P. K. Cunningham A. A. Patel N. G. Morales F. J. Epstein P. R. Daszak P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544. doi: 10.1016/j.tree.2004.07.021, PMID: 16701319
Aranda M. A. Freitas-Astúa J. (2017). Ecology and diversity of plant viruses, and epidemiology of plant virus-induced diseases. Ann. Appl. Biol. 171, 1–4. doi: 10.1111/aab.12361
Babaie G. Izadpanah K. (2003). Vector transmission of eggplant mottled dwarf virus in Iran. J. Phytopathol. 151, 679–682. doi: 10.1046/j.1439-0434.2003.00788.x
Bankevich A. Nurk S. Antipov D. Gurevich A. A. Dvorkin M. Kulikov A. S. et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477. doi: 10.1089/cmb.2012.0021
Benton J. (2007). Tomato Plant Culture: In the Field, Greenhouse, and Home Garden, Second Edition.
Bernardo P. Charles-Dominique T. Barakat M. Ortet P. Fernandez E. Filloux D. et al. (2018). Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME J 12, 173–184. doi: 10.1038/ismej.2017.155
Bertolini E. Olmos A. López M. M. Cambra M. (2003). Multiplex nested reverse transcription-polymerase chain reaction in a single tube for sensitive and simultaneous detection of four RNA viruses and Pseudomonas savastanoi pv. Savastanoi in olive trees. Phytopathology 93, 286–292. doi: 10.1094/PHYTO.2003.93.3.286, PMID: 18944338
Black L. M. (1940). Strains of Potato Yellow-Dwarf Virus. American Journal of Botany 27:386–392.
Blancard D. (2009). Les maladies de la tomate—Identifier, connaître, maîtriser. Librairie Quae. Available at: https://www.quae.com/produit/844/9782759213627/les-maladies-de-la-tomate
Cook-Patton S. C. McArt S. H. Parachnowitsch A. L. Thaler J. S. Agrawal A. A. (2011). A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92, 915–923. doi: 10.1890/10-0999.1, PMID: 21661554
Demsar J. Curk T. Erjavec A. Gorup C. Hocevar T. Milutinovic M. et al. (2013). Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14, 2349–2353.
Desbiez C. Wipf-Scheibel C. Millot P. Berthier K. Girardot G. Gognalons P. et al. (2020). Distribution and evolution of the major viruses infecting cucurbitaceous and solanaceous crops in the French Mediterranean area. Virus Res. 286:198042. doi: 10.1016/j.virusres.2020.198042, PMID: 32504705
Dumont A.M. (2017). Analyse systémique des conditions de travail et d’emploi dans la production de légumes pour le marché du frais en Région wallonne (Belgique), dans une perspective de transition agroécologique. PhD Dissertation, UCLouvain. Louvain-la-Neuve.
Dumont A. M. Gasselin P. Baret P. V. (2020). Transitions in agriculture: three frameworks highlighting coexistence between a new agroecological configuration and an old, organic and conventional configuration of vegetable production in Wallonia (Belgium). Geoforum 108, 98–109. doi: 10.1016/j.geoforum.2019.11.018
Duong T. T. Brewer T. Luck J. Zander K. (2019). A global review of farmers’ perceptions of agricultural risks and risk management strategies. Agriculture 9:10. doi: 10.3390/agriculture9010010
EPPO Bulletin (2020). Tomato brown rugose fruit virus (2021). EPPO Bulletin 51, 178–197. doi: 10.1111/epp.12723
Elena S. F. Fraile A. García-Arenal F. (2014). “Chapter three—evolution and emergence of plant viruses” in Advances in Virus Research. eds. Maramorosch K. Murphy F. A. (Advances in Virus Research, Elsevier: Academic Press), 161–191.
Eurostat (2021). Statistics on tomatoes production, prices and trade. Available at: https://agriculture.ec.europa.eu/data-and-analysis/markets/overviews/market-observatories/fruit-and-vegetables/tomatoes-statistics_en#statistics/ (Accessed November 30, 2022).
FAOSTAT (2020). Statistics Division of the Food and Agricultural Organization of the United Nations. Available at: http://www.fao.org/faostat/en/ (Accessed November 30, 2022).
Filloux D. Dallot S. Delaunay A. Galzi S. Jacquot E. Roumagnac P. (2015). Metagenomics approaches based on Virion-associated nucleic acids (VANA): an innovative tool for assessing without a priori viral diversity of plants. Methods Mol. Biol. 1302, 249–257. doi: 10.1007/978-1-4939-2620-6_18
Gaafar Y. Z. A. Abdelgalil M. A. M. Knierim D. Richert-Pöggeler K. R. Menzel W. Winter S. et al. (2017). First report of physostegia chlorotic mottle virus on tomato (Solanum lycopersicum) in Germany. Plant Dis. 102:255. doi: 10.1094/PDIS-05-17-0737-PDN
Haddad N. M. Crutsinger G. M. Gross K. Haarstad J. Knops J. M. H. Tilman D. (2009). Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039. doi: 10.1111/j.1461-0248.2009.01356.x, PMID: 19702636
Hanssen I. M. Lapidot M. Thomma B. P. H. J. (2010). Emerging viral diseases of tomato crops. Mol. Plant-Microbe Interact. 23, 539–548. doi: 10.1094/MPMI-23-5-0539
Hertel T. Elouafi I. Tanticharoen M. Ewert F. (2021). Diversification for enhanced food systems resilience. Nat. Food 2, 832–834. doi: 10.1038/s43016-021-00403-9, PMID: 37117513
Hull R. (2014). Plant virology. Fifth edition. Elsevier Inc., USA.
Jeger M. J. (2020). The epidemiology of plant virus disease: towards a new synthesis. Plan. Theory 9:1768. doi: 10.3390/plants9121768, PMID: 33327457
Jones R. A. C. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 141, 113–130. doi: 10.1016/j.virusres.2008.07.028, PMID: 19159652
Jones J. J. Zitter T. A. Momol T. M. Miller S. A. (eds.) (2014). Compendium of Tomato Diseases and Pests 2nd Edn. St-Paul, Minnesota: The American Phytopathological Society Press, 86–88
Keesing F. Belden L. K. Daszak P. Dobson A. Harvell C. D. Holt R. D. et al. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652. doi: 10.1038/nature09575, PMID: 21124449
Keesing F. Holt R. D. Ostfeld R. S. (2006). Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498. doi: 10.1111/j.1461-0248.2006.00885.x
Keesing F. Ostfeld R. S. (2021). Dilution effects in disease ecology. Ecol. Lett. 24, 2490–2505. doi: 10.1111/ele.13875, PMID: 34482609
King K. C. Lively C. M. (2012). Does genetic diversity limit disease spread in natural host populations? Heredity 109, 199–203. doi: 10.1038/hdy.2012.33, PMID: 22713998
Knops J. M. H. Tilman D. Haddad N. M. Naeem S. Mitchell C. E. Haarstad J. et al. (1999). Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2, 286–293. doi: 10.1046/j.1461-0248.1999.00083.x, PMID: 33810630
Kremen C. Miles A. (2012). Ecosystem Services in Biologically Diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17. doi: 10.5751/ES-05035-170440
Laforge J. Fenton A. Lavalée-Picard V. McLachlan S. (2018). New farmers and food policies in Canada. Can. Food Stud. 5, 128–152. doi: 10.15353/cfs-rcea.v5i3.288
Lefeuvre P. Martin D. P. Elena S. F. Shepherd D. N. Roumagnac P. Varsani A. (2019). Evolution and ecology of plant viruses. Nat. Rev. Microbiol. 17, 632–644. doi: 10.1038/s41579-019-0232-3
Li Y. Tan G. Lan P. Zhang A. Liu Y. Li R. et al. (2018). Detection of tobamoviruses by RT-PCR using a novel pair of degenerate primers. J. Virol. Methods 259, 122–128. doi: 10.1016/j.jviromet.2018.06.012, PMID: 29944907
Lichtenberg E. M. Kennedy C. M. Kremen C. Batáry P. Berendse F. Bommarco R. et al. (2017). A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Chang. Biol. 23, 4946–4957. doi: 10.1111/gcb.13714, PMID: 28488295
Liu X. Chen L. Liu M. García-Guzmán G. Gilbert G. S. Zhou S. (2020). Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129, 457–465. doi: 10.1111/oik.07027, PMID: 28488295
MacDiarmid R. Rodoni B. Melcher U. Ochoa-Corona F. Roossinck M. (2013). Biosecurity implications of new technology and discovery in plant virus research. PLoS Pathog. 9:e1003337. doi: 10.1371/journal.ppat.1003337, PMID: 23950706
Maclot F. J. Debue V. Blouin A. G. Fontdevila Pareta N. Tamisier L. Filloux D. et al. (2021). Identification, molecular and biological characterization of two novel secovirids in wild grass species in Belgium. Virus Res. 298:198397. doi: 10.1016/j.virusres.2021.198397, PMID: 33744338
Mahjabeen Akhtar K. P. Sarwar N. Saleem M. Y. Asghar M. Iqbal Q. Jamil F. F. (2012). Effect of cucumber mosaic virus infection on morphology, yield and phenolic contents of tomato. Arch. Phytopathol. Plant Protect. 45, 766–782. doi: 10.1080/03235408.2011.595965
Massart S. Adams I. Al Rwahnih M. Baeyen S. Bilodeau G. J. Blouin A. G. et al. (2014). Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Research 188, 90–96. doi: 10.1016/j.virusres.2014.03.029
Menzel W. Richert-Pöggeler K. Winter S. Knierim D. (2018). Characterization of a nucleorhabdovirus from Physostegia. Acta Hortic. 1193, 29–38. doi: 10.17660/ActaHortic.2018.1193.5
Morel K. Léger F. (2016). A conceptual framework for alternative farmers’ strategic choices: the case of French organic market gardening microfarms. Agroecol. Sustain. Food Syst. 40, 466–492. doi: 10.1080/21683565.2016.1140695
Mori A. S. Furukawa T. Sasaki T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364. doi: 10.1111/brv.12004
Mundt C. C. (2002). Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 40, 381–410. doi: 10.1146/annurev.phyto.40.011402.113723
Murray-Watson R. E. Hamelin F. M. Cunniffe N. J. (2022). How growers make decisions impacts plant disease control. PLoS Comput. Biol. 18:e1010309. doi: 10.1371/journal.pcbi.1010309, PMID: 35994449
Nicaise V. (2014). Crop immunity against viruses: outcomes and future challenges. Frontiers in Plant Science 5. Available at: https://www.frontiersin.org/articles/10.3389/fpls.2014.00660 (Accessed February 17, 2023).
Oladokun J. O. Halabi M. H. Barua P. Nath P. D. (2019). Tomato brown rugose fruit disease: current distribution, knowledge and future prospects. Plant Pathol. 68, 1579–1586. doi: 10.1111/ppa.13096
Oñate-Sánchez L. Vicente-Carbajosa J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes 1:93. doi: 10.1186/1756-0500-1-93
Pagán I. González-Jara P. Moreno-Letelier A. Rodelo-Urrego M. Fraile A. Piñero D. et al. (2012). Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system. PLoS Pathog. 8:e1002796. doi: 10.1371/journal.ppat.1002796, PMID: 22792068
Panno S. Davino S. Caruso A. G. Bertacca S. Crnogorac A. Mandić A. et al. (2021). A review of the Most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean Basin. Agronomy 11:2188. doi: 10.3390/agronomy11112188
Petersen-Rockney M. Baur P. Guzman A. Bender S. F. Calo A. Castillo F. et al. (2021). Narrow and brittle or broad and nimble? Comparing adaptive capacity in simplifying and diversifying farming systems. Front. Sustain. Food Syst. 5:564900. doi: 10.3389/fsufs.2021.564900
Pinel-Galzi A. Traoré O. Séré Y. Hébrard E. Fargette D. (2015). The biogeography of viral emergence: rice yellow mottle virus as a case study. Current Opinion in Virology 10, 7–13. doi: 10.1016/j.coviro.2014.12.002
Plateau L. Roudart L. Hudon M. Maréchal K. (2021). Opening the organisational black box to grasp the difficulties of agroecological transition. An empirical analysis of tensions in agroecological production cooperatives. Ecol. Econ. 185:107048. doi: 10.1016/j.ecolecon.2021.107048
Ponisio L. C. M’Gonigle L. K. Mace K. C. Palomino J. de Valpine P. Kremen C. (2015). Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B Biol. Sci. 282:20141396. doi: 10.1098/rspb.2014.1396, PMID: 25621333
Power A. G. (1991). Virus spread and vector dynamics in genetically diverse plant populations. Ecology 72, 232–241. doi: 10.2307/1938917
Ratnadass A. Fernandes P. Avelino J. Habib R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron. Sustain. Dev. 32, 273–303. doi: 10.1007/s13593-011-0022-4
Rivarez M. P. S. Vučurović A. Mehle N. Ravnikar M. Kutnjak D. (2021). Global advances in tomato Virome research: current status and the impact of high-throughput sequencing. Front. Microbiol. 12:671925. doi: 10.3389/fmicb.2021.671925, PMID: 34093492
Rong W. Rollin J. Hanafi M. Roux N. Massart S. (2022). Validation of high throughput sequencing as virus indexing test for Musa germplasm: performance criteria evaluation and contamination monitoring using an alien control. PhytoFrontiers. doi: 10.1094/PHYTOFR-03-22-0030-FI
Roossinck M. J. García-Arenal F. (2015). Ecosystem simplification, biodiversity loss and plant virus emergence. Curr. Opin. Virol. 10, 56–62. doi: 10.1016/j.coviro.2015.01.005, PMID: 25638504
Rubio L. Galipienso L. Ferriol I. (2020). Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Front. Plant Sci. 11:1092. doi: 10.3389/fpls.2020.01092, PMID: 32765569
Salem N. Mansour A. Ciuffo M. Falk B. W. Turina M. (2016). A new tobamovirus infecting tomato crops in Jordan. Arch. Virol. 161, 503–506. doi: 10.1007/s00705-015-2677-7, PMID: 26586328
Saqib M. Wylie S. J. Jones M. G. K. (2015). Serendipitous identification of a new Iflavirus-like virus infecting tomato and its subsequent characterization. Plant Pathol. 64, 519–527. doi: 10.1111/ppa.12293
Schreinemachers P. Balasubramaniam S. Boopathi N. M. Ha C. V. Kenyon L. Praneetvatakul S. et al. (2015). Farmers’ perceptions and management of plant viruses in vegetables and legumes in tropical and subtropical Asia. Crop Prot. 75, 115–123. doi: 10.1016/j.cropro.2015.05.012
Temple C. Blouin A. G. De Jonghe K. Foucart Y. Botermans M. Westenberg M. et al. (2022). Biological and genetic characterization of Physostegia chlorotic mottle virus in Europe based on host range, location, and time. Plant Dis. 106, 2797–2807. doi: 10.1094/PDIS-12-21-2800-RE, PMID: 35394335
Trebicki P. (2020). Climate change and plant virus epidemiology. Virus Res. 286:198059. doi: 10.1016/j.virusres.2020.198059, PMID: 32561376
Ullah N. Ali A. Ahmad M. Fahim M. Din N. Ahmad F. (2017). Evaluation of tomato genotypes against tomato mosaic virus (ToMV) and its effect on yield contributing parameters. Pak. J. Bot. 49, 1585–1592.
van Bruggen A. H. C. Gamliel A. Finckh M. R. (2016). Plant disease management in organic farming systems. Pest Manag. Sci. 72, 30–44. doi: 10.1002/ps.4145
van der Ploeg J. D. Barjolle D. Bruil J. Brunori G. Costa Madureira L. M. Dessein J. et al. (2019). The economic potential of agroecology: empirical evidence from Europe. J. Rural. Stud. 71, 46–61. doi: 10.1016/j.jrurstud.2019.09.003
Vega D. Gally M. E. Romero A. M. Poggio S. L. (2019). Functional groups of plant pathogens in agroecosystems: a review. Eur. J. Plant Pathol. 153, 695–713. doi: 10.1007/s10658-018-01616-8
Velasco L. Ruiz L. Galipienso L. Rubio L. Janssen D. (2020). A historical account of viruses in intensive horticultural crops in the Spanish Mediterranean arc: new challenges for a sustainable agriculture. Agronomy 10:860. doi: 10.3390/agronomy10060860
Villamor D. E. V. Ho T. Al Rwahnih M. Martin R. R. Tzanetakis I. E. (2019). High throughput sequencing for plant virus detection and discovery. Phytopathology 109, 716–725. doi: 10.1094/PHYTO-07-18-0257-RVW
Vučurović A. Kutnjak D. Mehle N. Stanković I. Pecman A. Bulajić A. et al. (2021). Detection of four new tomato viruses in Serbia using post hoc high-throughput sequencing analysis of samples from a large-scale field survey. Plant Dis. 105, 2325–2332. doi: 10.1094/PDIS-09-20-1915-RE, PMID: 33761774
Wezel A. Casagrande M. Celette F. Vian J.-F. Ferrer A. Peigné J. (2014). Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20. doi: 10.1007/s13593-013-0180-7
Xu C. Sun X. Taylor A. Jiao C. Xu Y. Cai X. et al. (2017). Diversity, distribution, and evolution of tomato viruses in China uncovered by small RNA sequencing. J. Virol. 91. doi: 10.1128/JVI.00173-17
Yamamura Y. Scholthof H. B. (2005). Tomato bushy stunt virus: a resilient model system to study virus–plant interactions. Mol. Plant Pathol. 6, 491–502. doi: 10.1111/j.1364-3703.2005.00301.x, PMID: 20565674
Zhang S. Griffiths J. S. Marchand G. Bernards M. A. Wang A. (2022). Tomato brown rugose fruit virus: an emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide. Mol. Plant Pathol. 23, 1262–1277. doi: 10.1111/mpp.13229, PMID: 35598295