Article (Scientific journals)
Accurate numerical prediction of ductile fracture and micromechanical damage evolution for Ti6Al4V alloy
Rojas Ulloa, Carlos Eduardo; Tuninetti, Víctor; Sepulveda, Hector et al.
2023In Computational Mechanics
Peer Reviewed verified by ORBi
 

Files


Full Text
Manuscript_SC11TNT_V11_CC BY preprint.pdf
Author preprint (1.49 MB) Creative Commons License - Attribution, Non-Commercial, ShareAlike
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Applied Mathematics; Computational Mathematics; Computational Theory and Mathematics; Mechanical Engineering; Ocean Engineering; Computational Mechanics
Abstract :
[en] A CPB06-based Stewart-Cazacu micromechanical damage model is implemented and validated for Ti6Al4V material. It provides accurate numerical predictions in terms of macromechanical material response and damage accumulation. The Stewart & Cazacu–Tvergaard & Needleman–Thomason (SC11–TNT) based damage model presented here is developed and implemented in the finite element software Lagamine following a semi-implicit cutting plane algorithm and a well-chosen flow rule approach. The damage of the material is characterized by the porosity ratio contained within the material. It is modelled by void nucleation, growth and coalescence mechanisms. The onset of the coalescence is established by a criterion based on Thomason’s approach. The macroscopic results obtained by the implemented model demonstrate a strong ability to predict the experimental elastoplastic mechanical behaviour of the material across a full deformation range and different types of loadings. At the microscopic level, the predicted accumulated porosity ratio of the material matrix at fracture exhibits a good correlation with the experimental observations. The element deletion feature, activated when a certain damage threshold is reached, provides a physical description of the loss of load-carrying capacity of the material during fracture.
Disciplines :
Materials science & engineering
Author, co-author :
Rojas Ulloa, Carlos Eduardo  ;  Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Tuninetti, Víctor ;  UFRO - Universidad de La Frontera [CL] > Department of Mechanical Engineering > Assistant Professor
Sepulveda, Hector ;  Université de Liège - ULiège > Urban and Environmental Engineering
Betaieb, Ehssen ;  Université de Liège - ULiège > Urban and Environmental Engineering
Pincheira, Gonzalo;  Universidad de Talca > Department of Industrial technologies > Professor
Gilles, Gaëtan;  Simens Industry Software NV > Centre d'exploitation et de compétence Samtech > Engineer
Duchene, Laurent  ;  Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Habraken, Anne  ;  Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Language :
English
Title :
Accurate numerical prediction of ductile fracture and micromechanical damage evolution for Ti6Al4V alloy
Publication date :
04 July 2023
Journal title :
Computational Mechanics
ISSN :
0178-7675
eISSN :
1432-0924
Publisher :
Springer Science and Business Media LLC
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture [BE]
Funding number :
Universidad de La Frontera Internal Research Fund DIUFRO (Project DI22-0067); WBI/AGCID RI02 (DIE23-0001)
Funding text :
This work was funded by the international cooperation agreement WBI/AGCID SUB2019/419031 (DIE19-0005) and the international collaborative research project WBI/AGCID RI02 (DIE23-0001), the Universidad de La Frontera Internal Research Fund DIUFRO (Project DI22-0067) and FRIA Grant N°4000-8987 (F.R.S.-FNRS., Belgium). As research director of F.R.S.-FNRS, A.M.H. thanks the Fund for Scientific Research for financial support. The authors also acknowledge the Dirección de Investigación (Universidad de La Frontera) for partial funding, the FONDEQUIP EQM130014 and EQM180111.
Available on ORBi :
since 06 July 2023

Statistics


Number of views
61 (8 by ULiège)
Number of downloads
77 (2 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
1
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi