Ahmad, Sher ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Mustapha, L.B.; Certech, rue Jules Bordet 45, Seneffe, 7180, Belgium
Calvo, Sébastien ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Collignon, F.; Certech, rue Jules Bordet 45, Seneffe, 7180, Belgium
Fernandes, A.E.; Certech, rue Jules Bordet 45, Seneffe, 7180, Belgium
Toye, Dominique ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Language :
English
Title :
Continuous flow hydrothermal synthesis of zeolite LTA in intensified reactor. Experimental and multiphysics CFD modeling approach
Publication date :
2023
Journal title :
Chemical Engineering and Processing: Process Intensification
ISSN :
0255-2701
eISSN :
1873-3204
Publisher :
Elsevier B.V.
Volume :
189
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This work was supported by the European Regional Development Fund (ERDF) and Wallonia within the framework of the program “Wallonie-2020.EU” ( INTENSE4CHEM , project no. ( 699993–152208 ).
Van Gerven, T., Stankiewicz, A., Structure, energy, synergy, time—the fundamentals of process intensification. Ind. Eng. Chem. Res. 48:5 (2009), 2465–2474, 10.1021/ie801501y Mar.
Ahmad, S., Sebai, W., Belleville, M.-.P., Brun, N., Galarneau, A., Sanchez-Marcano, J., Enzymatic monolithic reactors for micropollutants degradation. Catal. Today 362 (2021), 62–71, 10.1016/j.cattod.2020.04.048 Feb.
E.lvira, K.S., i. Solvas, X.C., Wootton, R.C.R., d.eMello, A.J., The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem., 5(11), 2013, 11, 10.1038/nchem.1753 Art. no.Nov.
McGlone, T., Briggs, N.E.B., C.lark, C.A., B.rown, C.J., Sefcik, J., F.lorence, A.J., Oscillatory Flow Reactors (OFRs) for Continuous Manufacturing and Crystallization. Org. Process Res. Dev. 19:9 (2015), 1186–1202, 10.1021/acs.oprd.5b00225 Sep.
Cho, Y.-.I., et al. Synthesis of TiO2 Nano-Powders from Aqueous Solutions with Various Cation and Anion Species. Characterization & Control of Interfaces for High Quality Advanced Materials, 2006, John Wiley & Sons, Ltd, 59–66, 10.1002/9781118406038.ch8.
C. Xu, “Continuous and batch hydrothermal synthesis of metal oxide nanoparticles and metal oxide-activated carbon nanocomposites,” Aug. 2006, Accessed: Dec. 28, 2021. [Online]. Available: https://smartech.gatech.edu/handle/1853/13982.
Sebai, W., et al. Biocatalytic elimination of pharmaceutics found in water with hierarchical silica monoliths in continuous flow. Front. Chem. Eng., 4, 2022 Accessed: Apr. 01, 2023. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fceng.2022.823877.
Ahmad, S., Sebai, W., Belleville, M.-.P., Brun, N., Galarneau, A., Sanchez-Marcano, J., Experimental and modeling of tetracycline degradation in water in a flow-through enzymatic monolithic reactor. Environ. Sci. Pollut. Res. 29:50 (2022), 75896–75906, 10.1007/s11356-022-21204-y Oct.
Gao, Y., Pinho, B., Torrente-Murciano, L., Recent progress on the manufacturing of nanoparticles in multi-phase and single-phase flow reactors. Curr. Opin. Chem. Eng. 29 (2020), 26–33, 10.1016/j.coche.2020.03.008 Sep.
Sebastian Cabeza, V., Kuhn, S., K.ulkarni, A.A., J.ensen, K.F., Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform. Langmuir 28:17 (2012), 7007–7013, 10.1021/la205131e May.
K.urt, S.K., Akhtar, M., Nigam, K.D.P., Kockmann, N., Continuous reactive precipitation in a coiled flow inverter: inert particle tracking, modular design, and production of uniform CaCO3 particles. Ind. Eng. Chem. Res. 56:39 (2017), 11320–11335, 10.1021/acs.iecr.7b02240 Oct.
B.enitez-Chapa, A.G., Nigam, K.D.P., A.lvarez, A.J., Process intensification of continuous antisolvent crystallization using a coiled flow inverter. Ind. Eng. Chem. Res. 59:9 (2020), 3934–3942, 10.1021/acs.iecr.9b04160 Mar.
Delgado-Licona, F., L.ópez-Guajardo, E.A., González-García, J., Nigam, K.D.P., Montesinos-Castellanos, A., Intensified tailoring of ZnO particles in a continuous flow reactor via hydrothermal synthesis. Chem. Eng. J., 396, 2020, 125281, 10.1016/j.cej.2020.125281 Sep.
Mei, J., Duan, A., Wang, X., A Brief Review on Solvent-Free Synthesis of Zeolites. Materials (Basel), 14(4), 2021, 4, 10.3390/ma14040788 Art. no.Jan.
Mintova, S., Mo, S., Bein, T., Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chem. Mater. 13:3 (2001), 901–905, 10.1021/cm000671w Mar.
Petushkov, A., Freeman, J., L.arsen, S.C., Framework stability of nanocrystalline NaY in aqueous solution at varying pH. Langmuir 26:9 (2010), 6695–6701, 10.1021/la9040198 May.
C.undy, C.S., H.enty, M.S., P.laisted, R.J., Zeolite synthesis using a semicontinuous reactor, Part 1: controlled nucleation and growth of ZSM-5 crystals having well-defined morphologies. Zeolites 15:4 (1995), 353–372, 10.1016/0144-2449(94)00052-T May.
Liu, Z., Wakihara, T., Nishioka, D., Oshima, K., Takewaki, T., Okubo, T., One-minute synthesis of crystalline microporous aluminophosphate (AlPO4-5) by combining fast heating with a seed-assisted method. Chem. Commun. 50:19 (2014), 2526–2528, 10.1039/C3CC49548E Feb.
Liu, Z., et al. Widening synthesis bottlenecks: realization of ultrafast and continuous-flow synthesis of high-silica zeolite SSZ-13 for NOx removal. Angew. Chem. 127:19 (2015), 5775–5779, 10.1002/ange.201501160.
Liu, Z., et al. Continuous flow synthesis of ZSM-5 zeolite on the order of seconds. Proc. Natl. Acad. Sci. 113:50 (2016), 14267–14271, 10.1073/pnas.1615872113 Dec.
T.hompson, R.W., Dyer, A., A modified population balance model for hydrothermal molecular sieve zeolite synthesis. Zeolites 5:5 (1985), 292–301, 10.1016/0144-2449(85)90161-7 Sep.
Ahmad, S., M.arson, G.V., R.ehman, W.U., Younas, M., Farrukh, S., Rezakazemi, M., Development of mass and heat transfer coupled model of hollow fiber membrane for salt recovery from brine via osmotic membrane distillation. Environ. Sci. Eur., 33(1), 2021, 81, 10.1186/s12302-021-00520-z Jul.
G.addem, M.R., Ookawara, S., Nigam, K.D.P., Yoshikawa, S., Matsumoto, H., Numerical modeling of segmented flow in coiled flow inverter: hydrodynamics and mass transfer studies. Chem. Eng. Sci., 234, 2021, 116400, 10.1016/j.ces.2020.116400 Apr.
J. Bronic, P. Frontera, F. Testa, B. Subotic, R. Aiello, and J.B. N.agy, “02-P-29 - Study of zeolite a crystallization from clear solution by hydrothermal synthesis and population balance simulation,” in Studies in Surface Science and Catalysis, A. Galarneau, F. Fajula, F. Di Renzo, and J. Vedrine, Eds., in Zeolites and Mesoporous Materials at the dawn of the 21st century, vol. 135. Elsevier, 2001, p. 192. doi: 10.1016/S0167-2991(01)81368-9.
S.heikh, A.Y., J.ones, A.G., Graham, P., Population balance modeling of particle formation during the chemical synthesis of zeolite crystals: assessment of hydrothermal precipitation kinetics. Zeolites 16:2 (1996), 164–172, 10.1016/0144-2449(95)00116-6 Feb.
L.B. M.cCusker and C. Baerlocher, “Chapter 3 Zeolite structures,” in Studies in Surface Science and Catalysis, H. van Bekkum, E. M. Flanigen, P. A. Jacobs, and J. C. Jansen, Eds., in Introduction to Zeolite Science and Practice, vol. 137. Elsevier, 2001, pp. 37–67. doi: 10.1016/S0167-2991(01)80244-5.
Shunmuga Sundaram, P., Sangeetha, T., Rajakarthihan, S., Vijayalaksmi, R., Elangovan, A., Arivazhagan, G., XRD structural studies on cobalt doped zinc oxide nanoparticles synthesized by coprecipitation method: williamson-Hall and size-strain plot approaches. Phys. B Condens. Matter, 595, 2020, 412342, 10.1016/j.physb.2020.412342 Oct.
Bosnar, S., Antonić, T., Bronić, J., Subotić, B., Mechanism and kinetics of the growth of zeolite microcrystals. Part 2: influence of sodium ions concentration in the liquid phase on the growth kinetics of zeolite A microcrystals. Microporous Mesoporous Mater 76:1–3 (2004), 157–165, 10.1016/j.micromeso.2004.07.021 Dec.
Bronić, J., Mužic, A., Antonić Jelić, T., Kontrec, J., Subotić, B., Mechanism of crystallization of zeolite A microcrystals from initially clear aluminosilicate solution: a population balance analysis. J. Cryst. Growth 310:22 (2008), 4656–4665, 10.1016/j.jcrysgro.2008.08.044 Nov.
C.undy, C.S., L.owe, B.M., S.inclair, D.M., Direct measurements of the crystal growth rate and nucleation behaviour of silicalite, a zeolitic silica polymorph. J. Cryst. Growth 100:1–2 (1990), 189–202, 10.1016/0022-0248(90)90622-R Feb.
W.atson, J.N., I.ton, L.E., K.eir, R.I., T.homas, J.C., D.owling, T.L., W.hite, J.W., TPA−silicalite crystallization from homogeneous solution: kinetics and mechanism of nucleation and growth. J. Phys. Chem. B 101:48 (1997), 10094–10104, 10.1021/jp971531l Nov.
Ejaz, T., J.ones, A.G., Graham, P., Solubility of zeolite a and its amorphous precursor under synthesis conditions. J. Chem. Eng. Data 44:3 (1999), 574–576, 10.1021/je980164j May.