Keywords :
Aspergillosis; Chronic idiopathic rhinitis; Dog; Fungal rhinitis; Microbiota; Mycotic rhinitis; Nasal; Nasal cavity; Dogs; Animals; Nose; Rhinitis/veterinary; Rhinitis/diagnosis; Rhinitis/microbiology; Dog Diseases/drug therapy; Nose Neoplasms/diagnosis; Nose Neoplasms/veterinary; Dog Diseases; Nose Neoplasms; Rhinitis; Microbiology; Microbiology (medical)
Abstract :
[en] [en] BACKGROUND: Pathogenesis of canine fungal rhinitis is still not fully understood. Treatment remains challenging, after cure turbinate destruction may be associated with persistent clinical signs and recurrence of fungal rhinitis can occur. Alterations of the nasal microbiota have been demonstrated in dogs with chronic idiopathic rhinitis and nasal neoplasia, although whether they play a role in the pathogenesis or are a consequence of the disease is still unknown. The objectives of the present study were (1) to describe nasal microbiota alterations associated with fungal rhinitis in dogs, compared with chronic idiopathic rhinitis and controls, (2) to characterize the nasal microbiota modifications associated with successful treatment of fungal rhinitis. Forty dogs diagnosed with fungal rhinitis, 14 dogs with chronic idiopathic rhinitis and 29 healthy control dogs were included. Nine of the fungal rhinitis dogs were resampled after successful treatment with enilconazole infusion.
RESULTS: Only disease status contributed significantly to the variability of the microbiota. The relative abundance of the genus Moraxella was decreased in the fungal rhinitis (5.4 ± 18%) and chronic idiopathic rhinitis (4.6 ± 8.7%) groups compared to controls (51.8 ± 39.7%). Fungal rhinitis and chronic idiopathic rhinitis groups also showed an increased richness and α-diversity at species level compared with controls. Increase in unique families were associated with fungal rhinitis (Staphyloccaceae, Porphyromonadaceae, Enterobacteriaceae and Neisseriaceae) and chronic idiopathic rhinitis (Pasteurellaceae and Lactobacillaceae). In dogs with fungal rhinitis at cure, only 1 dog recovered a high relative abundance of Moraxellaceae.
CONCLUSIONS: Results confirm major alterations of the nasal microbiota in dogs affected with fungal rhinitis and chronic idiopathic rhinitis, consisting mainly in a decrease of Moraxella. Besides, a specific dysbiotic profile further differentiated fungal rhinitis from chronic idiopathic rhinitis. In dogs with fungal rhinitis, whether the NM returns to its pre-infection state or progresses toward chronic idiopathic rhinitis or fungal rhinitis recurrence warrants further investigation.
Scopus citations®
without self-citations
1