Advanced oxidation process; application of Sol-Gel technology; Hydrophilicity; visible absorption; pollutant degradation; TiO2 thin film
Abstract :
[en] In this work, an eco-friendly sol-gel synthesis of pure and doped TiO2 , previously developed at labscale, is applied in three different environmental applications at lab-scale and then, upscaled towards industrial applications. For each application, the TiO2 is used as a coating deposited mainly on steel substrates. The three applications are: (i) the development of a photocatalytic reactor made of a UV lamp, an ozonation part and a TiO2 photocatalytic coating to treat water from swimming pools, (ii) the development of a new generation of low energy sterilizers by an advanced oxidation process using a photocatalytic coating illuminated by a blue LED, and (iii) an easy-to-clean coating for outdoor steel. In each application, the up-scale results were similar to those obtained in the laboratory with respect to the crystallinity, the visual aspect, the hydrophilicity, and the photocatalytic properties of the produced coatings. These developments showed the possibility to bring sol-gel TiO2 products outside the laboratory towards pilot and industrial applications, and opens the way for many possible up-scaled sol-gel based environmental applications.
Disciplines :
Materials science & engineering Chemical engineering
Author, co-author :
Heinrichs, Benoît ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique : matériaux et procédés pour la transformation et le stockage d'énergie
Lambert, Stéphanie ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique : matériaux et procédés pour la transformation et le stockage d'énergie
Léonard, Géraldine; Department of Chemical Engineering -Nanomaterials, Catalysis & Electrochemistry, University of Liège, Liège, Belgium ; Rue du Château 13, Carmeuse, Andenne, Belgium
Alié, Christelle ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique : matériaux et procédés pour la transformation et le stockage d'énergie
Douven, Sigrid ; Université de Liège - ULiège > Chemical engineering ; SWDE, Verviers, Belgium ; Liège, Belgium
Geens, Jérémy ; Université de Liège - ULiège > Department of Chemical Engineering
Daniel, Alain; AC&CS -CRM GROUP
Archambeau, Catherine ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces ; AC&CS -CRM GROUP
Vreuls, Christelle ; Université de Liège - ULiège > Département de physique > Biophysique structurale ; Environmental Department, Celabor, Research Centre, Herve, Belgium
Luizi, Frédéric ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry ; Aquatic Science S.A, Zoning des Hauts Sarts, Herstal, Belgium
Mahy, Julien ; Université de Liège - ULiège > Chemical engineering ; Centre-Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Université du Québec, Québec, Canada
Brinker, CJ, Scherer GW (2013) Sol-gel science: the physics and chemistry of sol-gel processing. Academic press
Mahy JG, Deschamps F, Collard V et al. (2018) Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder. J SolGel Sci Technol 87:568–583. 10.1007/s10971-018-4751-6 DOI: 10.1007/s10971-018-4751-6
Claude V, Mahy JG, Geens J, Lambert SD (2019) Ni-doped γ-Al2O3 as secondary catalyst for bio-syngas purification: influence of Ni loading, catalyst preparation, and gas composition on catalytic activity. Mater Today Chem 13 10.1016/j.mtchem.2019.05.002
Mahy JG, Tilkin RG, Douven S, Lambert SD (2019) TiO2 nanocrystallites photocatalysts modified with metallic species: Comparison between Cu and Pt doping. Surfaces and Interfaces 17 10.1016/j.surfin.2019.100366
Uchiyama H, Bando T, Kozuka H (2019) Effect of the amount of H2O and HNO3 in Ti(OC3H7i)4 solutions on the crystallization of sol-gel-derived TiO2 films. Thin Solid Films 669:157–161. 10.1016/j.tsf.2018.10.050 DOI: 10.1016/j.tsf.2018.10.050
Haynes T, Hubert S, Carlier S, et al. (2020) Influence of water-miscible organic solvent on the activity and stability of silica‐coated ru catalysts in the selective hydrolytic hydrogenation of cellobiose into sorbitol. Catalysts 10 10.3390/catal10020149
Baranowska-Korczyc A, Mackiewicz E, Ranoszek-Soliwoda K, et al. (2022) Core/shell ag/sno2 nanowires for visible light photocatalysis. Catalysts 12 10.3390/catal12010030
Mahy JG, Lejeune L, Haynes T, et al. (2021) Eco-friendly colloidal aqueous sol-gel process for tio2 synthesis: The peptization method to obtain crystalline and photoactive materials at low temperature. Catalysts 11
Mahy JG, Tasseroul L, Zubiaur A et al. (2014) Highly dispersed iron xerogel catalysts for p-nitrophenol degradation by photo-Fenton effects. Microporous Mesoporous Mater 197:164–173. 10.1016/j.micromeso.2014.06.009 DOI: 10.1016/j.micromeso.2014.06.009
Léonard GLM, Pirard SL, Belet A et al. (2019) Optimizing support properties of heterogeneous catalysts for the coupling of carbon dioxide with epoxides. Chem Eng J 371:719–729. 10.1016/j.cej.2019.04.055 DOI: 10.1016/j.cej.2019.04.055
Léonard GLM, Belet A, Grignard B et al. (2019) Heterogenization of a cyclocarbonation catalyst: Optimization and kinetic study. Catal Today 334:140–155. 10.1016/j.cattod.2018.11.060 DOI: 10.1016/j.cattod.2018.11.060
Mahy JG, Claude V, Sacco L, Lambert SD (2017) Ethylene polymerization and hydrodechlorination of 1,2-dichloroethane mediated by nickel(II) covalently anchored to silica xerogels. J SolGel Sci Technol 81:59–68. 10.1007/s10971-016-4272-0 DOI: 10.1007/s10971-016-4272-0
Guillén-Santiago, Mayén S, Torres-Delgado G et al. (2010) Photocatalytic degradation of methylene blue using undoped and Ag-doped TiO2 thin films deposited by a sol–gel process: Effect of the ageing time of the starting solution and the film thickness. Mater Sci Eng: B 174:84–87. 10.1016/j.mseb.2010.03.009. a. a. DOI: 10.1016/j.mseb.2010.03.009
Gratzel M (2001) Sol-gel processed TiO2 films for photovoltaic applications. J SolGel Sci Technol 22:7–13. 10.1023/A:1011273700573 DOI: 10.1023/A:1011273700573
Amirnasr M, Nazeeruddin MK, Grätzel M (2000) Thermal stability of cis-dithiocyanato(2,2′-bipyridyl4,4′dicarboxylate) ruthenium(II) photosensitizer in the free form and on nanocrystalline TiO2films. Thermochim Acta 348:105–114 DOI: 10.1016/S0040-6031(99)00486-4
Bodson CJ, Heinrichs B, Tasseroul L et al. (2016) Efficient P- and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants. J Alloy Compd 682:144–153. 10.1016/j.jallcom.2016.04.295 DOI: 10.1016/j.jallcom.2016.04.295
Mahy JG, Tasseroul L, Herlitschke M et al. (2016) Fe3+/Iron Oxide/SiO2 Xerogel Catalysts for p-nitrophenol Degradation by Photo-Fenton Effects: Influence of Thermal Treatment on Catalysts Texture. Mater Today Proc 3:464–469. 10.1016/j.matpr.2016.01.043 DOI: 10.1016/j.matpr.2016.01.043
Abbad S, Guergouri K, Gazaout S et al. (2020) Effect of silver doping on the photocatalytic activity of TiO2 nanopowders synthesized by the sol-gel route. J Environ Chem Eng 8:103718. 10.1016/j.jece.2020.103718 DOI: 10.1016/j.jece.2020.103718
Al-Maliki FJ, Al-Lamey NH (2017) Synthesis of Tb-doped titanium dioxide nanostructures by sol–gel method for environmental photocatalysis applications. J SolGel Sci Technol 81:276–283. 10.1007/s10971-016-4190-1 DOI: 10.1007/s10971-016-4190-1
Anderson C, Bard AJ (1995) An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis. J Phys Chem 99:9882–9885. 10.1021/j100024a033 DOI: 10.1021/j100024a033
Ropero-Vega JL, Candal RJ, Pedraza-Avella JA et al. (2019) Enhanced visible light photoelectrochemical performance of β-Bi2O3-TiO2/ITO thin films prepared by aqueous sol-gel. J Solid State Electrochem 23:1757–1765. 10.1007/s10008-019-04270-0 DOI: 10.1007/s10008-019-04270-0
Houmard M, Riassetto D, Roussel F et al. (2007) Morphology and natural wettability properties of sol-gel derived TiO2-SiO2 composite thin films. Appl Surf Sci 254:1405–1414. 10.1016/j.apsusc.2007.06.072 DOI: 10.1016/j.apsusc.2007.06.072
Tasseroul L, Pirard SL, Lambert SD et al. (2012) Kinetic study of p-nitrophenol photodegradation with modified TiO 2 xerogels. Chem Eng J 191:441–450. 10.1016/j.cej.2012.02.050 DOI: 10.1016/j.cej.2012.02.050
Benhebal H, Chaib M, Leonard A et al. (2012) Photodegradation of phenol and benzoic acid by sol-gel-synthesized alkali metal-doped ZnO. Mater Sci Semicond Process 15:264–269. 10.1016/j.mssp.2011.12.001 DOI: 10.1016/j.mssp.2011.12.001
Hasnidawani JN, Azlina HN, Norita H et al. (2016) Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem 19:211–216. 10.1016/j.proche.2016.03.095 DOI: 10.1016/j.proche.2016.03.095
Mahy JG, Lejeune L, Haynes T, et al. (2021) Crystalline ZnO photocatalysts prepared at ambient temperature: Influence of morphology on p-nitrophenol degradation in water. Catalysts 11 10.3390/catal11101182
Mahy JG, Mbognou MHT, Léonard C, et al. (2022) Natural Clay Modified with ZnO/TiO2 to Enhance Pollutant Removal from Water. Catalysts 12 10.3390/catal12020148
Benhebal H, Wolfs C, Kadi S et al. (2019) Visible Light Sensitive SnO2/ZnCo2O4 Material for the Photocatalytic Removal of Organic Pollutants in Water. Inorg (Basel) 7:77
ben Haj Othmen W, Hamdi A, Addad A et al. (2018) Fe-doped SnO2 decorated reduced graphene oxide nanocomposite with enhanced visible light photocatalytic activity. J Photochem Photobio A Chem 367:145–155. 10.1016/j.jphotochem.2018.08.016 DOI: 10.1016/j.jphotochem.2018.08.016
Benhebal H, Chaib M, Eonard AL, et al. (2013) Sol-gel preparation and characterisation of SnO2 powders employed as catalyst for phenol photodegradation. Scientia Iranica C 1891–1898
Páez CA, Liquet DY, Calberg C et al. (2011) Study of photocatalytic decomposition of hydrogen peroxide over ramsdellite-MnO2 by O2-pressure monitoring. Catal Commun 15:132–136. 10.1016/j.catcom.2011.08.025 DOI: 10.1016/j.catcom.2011.08.025
Wu K, Wang Y, Zhitomirsky I (2010) Electrophoretic deposition of TiO2 and composite TiO2-MnO2 films using benzoic acid and phenolic molecules as charging additives. J Colloid Interface Sci 352:371–378. 10.1016/j.jcis.2010.08.059 DOI: 10.1016/j.jcis.2010.08.059
Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29. 10.1016/j.jhazmat.2011.11.050 DOI: 10.1016/j.jhazmat.2011.11.050
Rauf MA, Ashraf SS (2009) Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J 151:10–18. 10.1016/j.cej.2009.02.026 DOI: 10.1016/j.cej.2009.02.026
A Fujishima, Hashimoto K, Watanabe T (1999) TiO2 Photocatalysis: Fundamentals and Applications
Hoffmann MR, Martin ST, Choi Wonyong, Bahnemann DW (1995) Environmental Applications of Semiconductor Photocatalysis. Chem Rev 95:69–96. 10.1021/cr00033a004 DOI: 10.1021/cr00033a004
Linsebigler AL, Lu Guangquan, Yates JT (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem Rev 95:735–758. 10.1021/cr00035a013 DOI: 10.1021/cr00035a013
Carp O (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. 10.1016/j.progsolidstchem.2004.08.001 DOI: 10.1016/j.progsolidstchem.2004.08.001
Pelaez M, Nolan NT, Pillai SC et al. (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349. 10.1016/j.apcatb.2012.05.036 DOI: 10.1016/j.apcatb.2012.05.036
Benkhennouche-Bouchene H, Mahy JG, Wolfs C et al. (2021) Green synthesis of N/Zr Co-doped TiO2 for photocatalytic degradation of p-nitrophenol in wastewater. Catalysts 11:1–21. 10.3390/catal11020235 DOI: 10.3390/catal11020235
Zaleska A (2008) Doped-TiO2: A Review. Recent Patents on Engineering 157–164
Delsouz Khaki MR, Shafeeyan MS, Raman AAA, Daud WMAW (2018) Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J Mol Liq 258:354–365. 10.1016/j.molliq.2017.11.030 DOI: 10.1016/j.molliq.2017.11.030
Pouretedal HR (2018) Visible photocatalytic activity of co-doped TiO2/Zr, N nanoparticles in wastewater treatment of nitrotoluene samples. J Alloy Compd 735:2507–2511. 10.1016/j.jallcom.2017.12.018 DOI: 10.1016/j.jallcom.2017.12.018
Douven S, Mahy JG, Wolfs C et al. (2020) Efficient N, Fe Co-Doped TiO2 Active under Cost-Effective Visible LED Light: From Powders to Films. Catalysts 10:547. 10.3390/catal10050547 DOI: 10.3390/catal10050547
Vo NQD, Huynh NDT, Huynh HT, et al. (2021) TiO2-SiO2 coatings onto cordierite honeycomb monolith support for effective photocatalytic degradation of β-naphthol in a water solution. Mater Lett 302 10.1016/j.matlet.2021.130461
Guan K (2005) Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf Coat Technol 191:155–160. 10.1016/j.surfcoat.2004.02.022 DOI: 10.1016/j.surfcoat.2004.02.022
Manojkumar P, Lokeshkumar E, Saikiran A et al. (2020) Visible light photocatalytic activity of metal (Mo/V/W) doped porous TiO2 coating fabricated on Cp-Ti by plasma electrolytic oxidation. J Alloy Compd 825:154092. 10.1016/j.jallcom.2020.154092 DOI: 10.1016/j.jallcom.2020.154092
Salvadores F, Minen RI, Carballada J et al. (2016) Kinetic Study of Acetaldehyde Degradation Applying Visible Light Photocatalysis. Chem Eng Technol 39:166–174. 10.1002/ceat.201500507 DOI: 10.1002/ceat.201500507
Paz Y (2010) Application of TiO2 photocatalysis for air treatment: Patents’ overview. Appl Catal B 99:448–460. 10.1016/j.apcatb.2010.05.011 DOI: 10.1016/j.apcatb.2010.05.011
Jun TH, Lee K-S, Song HS (2012) Hydrophilicity of anatase TiO2/Cr-doped TiO2 thin films with different band gaps. Thin Solid Films 520:2609–2612. 10.1016/j.tsf.2011.11.026 DOI: 10.1016/j.tsf.2011.11.026
Mahy JG, Léonard GL-M, Pirard S et al. (2017) Aqueous sol-gel synthesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties. J SolGel Sci Technol 81:27–35. 10.1007/s10971-016-4020-5 DOI: 10.1007/s10971-016-4020-5
Malengreaux CM, Timmermans A, Pirard SL et al. (2012) Optimized deposition of TiO2 thin films produced by a non-aqueous sol–gel method and quantification of their photocatalytic activity. Chem Eng J 195–196:347–358. 10.1016/j.cej.2012.04.076 DOI: 10.1016/j.cej.2012.04.076
Crookes R (2007) Le décapage et la passivation de l’ acier inoxydable. 4