Paper published in a journal (Scientific congresses and symposiums)
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Delaunoy, Arnaud; Hermans, Joeri; Rozet, François et al.
2022In Advances in Neural Information Processing Systems
Peer Reviewed verified by ORBi
 

Files


Full Text
Balanced_NRE.pdf
Author postprint (610.47 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Statistics - Machine Learning; Computer Science - Learning; Statistics - Methodology
Abstract :
[en] Modern approaches for simulation-based inference rely upon deep learning surrogates to enable approximate inference with computer simulators. In practice, the estimated posteriors' computational faithfulness is, however, rarely guaranteed. For example, Hermans et al. (2021) show that current simulation-based inference algorithms can produce posteriors that are overconfident, hence risking false inferences. In this work, we introduce Balanced Neural Ratio Estimation (BNRE), a variation of the NRE algorithm designed to produce posterior approximations that tend to be more conservative, hence improving their reliability, while sharing the same Bayes optimal solution. We achieve this by enforcing a balancing condition that increases the quantified uncertainty in small simulation budget regimes while still converging to the exact posterior as the budget increases. We provide theoretical arguments showing that BNRE tends to produce posterior surrogates that are more conservative than NRE's. We evaluate BNRE on a wide variety of tasks and show that it produces conservative posterior surrogates on all tested benchmarks and simulation budgets. Finally, we emphasize that BNRE is straightforward to implement over NRE and does not introduce any computational overhead.
Disciplines :
Computer science
Author, co-author :
Delaunoy, Arnaud  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Hermans, Joeri  ;  Université de Liège - ULiège > Université de Liège - ULiège
Rozet, François  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Wehenkel, Antoine  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
 These authors have contributed equally to this work.
Language :
English
Title :
Towards Reliable Simulation-Based Inference with Balanced Neural Ratio Estimation
Publication date :
December 2022
Event name :
Advances in Neural Information Processing Systems 36
Event place :
New Orleans, United States
Event date :
November 28-December 9, 2023
Audience :
International
Journal title :
Advances in Neural Information Processing Systems
ISSN :
1049-5258
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Commentary :
Code available at https://github.com/montefiore-ai/balanced-nre
Available on ORBi :
since 09 June 2023

Statistics


Number of views
46 (16 by ULiège)
Number of downloads
24 (3 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1

Bibliography


Similar publications



Contact ORBi