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Abstract

Modern approaches for simulation-based inference rely upon deep learning sur-
rogates to enable approximate inference with computer simulators. In practice,
the estimated posteriors’ computational faithfulness is, however, rarely guaranteed.
For example, Hermans et al. [1] show that current simulation-based inference algo-
rithms can produce posteriors that are overconfident, hence risking false inferences.
In this work, we introduce Balanced Neural Ratio Estimation (BNRE), a variation of
the NRE algorithm [2] designed to produce posterior approximations that tend to be
more conservative, hence improving their reliability, while sharing the same Bayes
optimal solution. We achieve this by enforcing a balancing condition that increases
the quantified uncertainty in small simulation budget regimes while still converging
to the exact posterior as the budget increases. We provide theoretical arguments
showing that BNRE tends to produce posterior surrogates that are more conservative
than NRE’s. We evaluate BNRE on a wide variety of tasks and show that it produces
conservative posterior surrogates on all tested benchmarks and simulation budgets.
Finally, we emphasize that BNRE is straightforward to implement over NRE and
does not introduce any computational overhead.

1 Introduction

Many areas of science and engineering use parametric computer simulations to describe complex
stochastic generative processes. In this setting, Bayesian inference provides a principled framework
to identify parameters matching empirical observations. Computer simulations, however, define
the necessary likelihood function only implicitly, which prevents its evaluation and the use of
classical inference algorithms. To overcome this obstacle, recent simulation-based inference (SBI)
algorithms [3] build upon deep learning surrogates to approximate parts of the Bayes rule and
enable approximate inference. For example, [4, 5] build a surrogate of the likelihood function while
[6, 7, 2, 8, 9] approximate the likelihood-to-evidence ratio. The posterior can also be targeted directly
with variational inference, as proposed by [10, 11, 5]. These algorithms are either amortized or run
sequentially to drive the training towards a target observation and improve the simulation efficiency
of the procedure [10, 12, 2, 11, 4, 8, 5]. However, sequential methods have the drawback of being
computationally expensive to diagnose as the surrogates are only valid for the target observation
[1]. Truncated marginal neural ratio estimation [9] alleviates this issue by introducing a sequential
algorithm that builds a surrogate valid in a local region around the target.
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Since modern simulation-based inference algorithms rely on deep learning surrogates, concerns
naturally arise regarding their computational faithfulness and whether they are sufficiently adequate
for the inference task of interest. In Bayesian inference, these concerns can be at least partially
addressed with diagnostics designed to probe the correct behaviour of the inference method, such as
R̂ diagnostics for MCMC [13], or to assess the quality of posterior approximations directly. The latter
include diagnostics such as simulation-based calibration (SBC) [14] or coverage-based diagnostics
[15, 1]. As discussed by Hermans et al. [1], posterior approximations must be conservative to
guarantee reliable inferences, even when approximations are not faithful. For example, in the physical
sciences, where the goal is often to constrain parameters of interest, wrongly excluding plausible
values could drive the scientific inquiry in the wrong direction, whereas failing to exclude implausible
values because of (too) conservative estimations is much less detrimental. Unfortunately, the same
authors also demonstrate that current simulation-based inference algorithms can lead to overconfident
surrogates and therefore false inferences.

Scientific use cases requiring conservative inference include for example the study of dark matter
models in particle physics and astrophysics [16], which could be cold, warm, or hot dark matter. In
general, thermal dark matter models are described by a single parameter, the dark matter thermal
relic mass, which can be intuitively thought of as the energy the dark matter particle had in the Early
Universe. Small values correspond to warm or hot dark matter, while high values are descriptive of
cold dark matter. Applying an inference algorithm without diagnosing the learned estimator could
lead to constraints that are tighter than they should be. For example, whenever an overconfident
estimator produces posterior estimates that favor cold dark matter models, it could simultaneously
reject alternative models, such as the extensively studied Sterile Neutrino, a potential candidate for
the Warm Dark Matter particle. Making a scientific statement in this direction therefore requires the
uttermost care to not wrongly exclude values of the thermal relic mass that are actually plausible.

In this work, we develop a novel algorithm that not only converges to exact inference as the simulation
budget increases, but which is also more likely to produce conservative surrogates in small simulation
budget regimes. Towards this objective, we propose a variant of the NRE algorithm called Balanced
Neural Ratio Estimation (BNRE), which enforces a balancing condition on the binary neural classifier
to increase the reliability of its posterior approximations.

The structure of the manuscript is outlined as follows. Section 2 describes the formalism and the
necessary background. Section 3 describes BNRE and provides theoretical arguments towards its
conservativeness and reliability. Section 4 illustrates our main results and provides insights regarding
the behaviour of the method. Finally, Section 5 discusses related work while Section 6 summarizes
our contributions and hints at future work.

2 Background

2.1 Statistical formalism

This work is concerned with simulation-based inference algorithms that produce posterior approx-
imations p̂(ϑ |x) under the following semantics. Target parameters ϑ denote the parameters of
the model and we make the reasonable assumption that the prior p(ϑ) is tractable. The model is
generically expressed as a computer program, a simulator, that describes the forward dynamics of
interest based on the input parameters ϑ. The simulator implicitly defines the likelihood function
p(x |ϑ). While we cannot directly evaluate the likelihood p(x |ϑ), we can execute the computer
program to generate synthetic observables x ∼ p(x |ϑ). Every observable xo is tied to ground
truth parameters ϑ∗ whose forward evaluation within the simulator produced x∗.

Of special importance to Bayesians is the notion of a credible region, which is a domain Θ within
the target parameter space that satisfies

´
Θ
p(ϑ |x = x∗) dϑ = 1− α for some observable x∗ and

confidence level 1 − α. Because many such regions exist, we target the credible region with the
smallest volume, also known as the highest posterior density region [17, 18].

2.2 Neural ratio estimation

Neural Ratio Estimation (NRE) is an established approach in the simulation-based inference literature
both from frequentist [6] and Bayesian [7, 2, 8, 9] perspectives. In essence, all protocols rely on
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the density-ratio trick [19, 20, 6] to construct a surrogate of the likelihood ratio. In this work, we
consider an amortized estimator r̂(x |ϑ) of the intractable likelihood-to-evidence ratio r(x |ϑ) =

p(ϑ,x)/p(ϑ)p(x) = p(x |ϑ)/p(x) that can be learned by training a binary classifier d̂ : X×Θ 7→
[0, 1] to distinguish between samples of the joint p(ϑ,x) with class label 1 and samples of the product
of marginals p(ϑ)p(x) with class label 0, with equal label marginal probability. For the binary
cross-entropy loss, the Bayes optimal classifier is

d(ϑ,x) =
p(ϑ,x)

p(ϑ,x) + p(ϑ)p(x)
= σ

(
log

p(ϑ,x)

p(ϑ)p(x)

)
, (1)

where σ(·) is the sigmoid function. Given target parameters ϑ and an observable x supported by p(ϑ)

and p(x) respectively, the learned classifier d̂ provides an approximation for the log likelihood-to-
evidence ratio log r(x |ϑ) because log r(x |ϑ) = logit(d(ϑ,x)) ≈ logit(d̂(ϑ,x)) = log r̂(x |ϑ).
The log posterior density function is approximated as log p̂(ϑ |x) = log p(ϑ) + log r̂(x |ϑ).

3 Balanced binary classification for neural ratio estimation

Following Hermans et al. [1], let us first define the expected coverage probability of the 1 − α
highest posterior density regions derived from the posterior estimator p̂(ϑ |x) as

Ep(ϑ,x)

[
1
(
ϑ ∈ Θp̂(ϑ |x)(1− α)

)]
, (2)

where the function Θp̂(ϑ |x)(1 − α) yields the 1 − α highest posterior density region of p̂(ϑ |x).
This diagnostic probes the conservativeness of the posterior estimator (or the lack thereof) and can be
interpreted as the expected frequentist coverage Ep(ϑ)Ep(x |ϑ)

[
1
(
ϑ ∈ Θp̂(ϑ |x)(1− α)

)]
.

In this work, a posterior estimator has coverage at the confidence level 1− α whenever the expected
coverage probability is larger or equal to the nominal coverage probability, 1 − α. We say that a
posterior estimator is conservative when it has coverage for all confidence levels. The expected
coverage probability can be plotted for various levels α, which allows to visually identify conservative
posterior estimators. The expected coverage can also be shown to be a special case of the SBC
diagnostic [14] (see Appendix A), further motivating the usage of expected coverage.

Our main objective is to restrict the hypothesis space of the approximate classifiers d̂ to those leading
to conservative posterior estimators, hence solving the reliability concerns of NRE. Towards this goal,
we construct a hypothesis space of balanced classifiers and show both theoretically and empirically
that they lead to posterior estimators that tend to be more conservative.

3.1 Balanced binary classification

Definition 1. A classifier d̂ is balanced if Ep(ϑ,x)

[
d̂(ϑ,x)

]
= Ep(ϑ)p(x)

[
1− d̂(ϑ,x)

]
, or

Ep(ϑ,x)

[
d̂(ϑ,x)

]
+ Ep(ϑ)p(x)

[
d̂(ϑ,x)

]
= 1. (3)

Theorem 1. Any balanced classifier d̂ satisfies Ep(ϑ,x)

[
d(ϑ,x)

d̂(ϑ,x)

]
≥ 1.

Proof. The integral form of the balancing condition
¨ (

p(ϑ,x) + p(ϑ)p(x)
)
d̂(ϑ,x) dϑdx = 1 (4)

implies that
(
p(x,ϑ) + p(ϑ)p(x)

)
d̂(ϑ,x) is a valid density, both integrating to 1 and positive

everywhere. Therefore, its Kullback-Leibler (KL) divergence with p(ϑ,x) is positive. Through
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Jensen’s inequality, we obtain

0 ≤ KL
(
p(ϑ,x)

∣∣∣∣(p(ϑ,x) + p(ϑ)p(x)
)
d̂(ϑ,x)

)
≤ Ep(ϑ,x)

[
log

p(ϑ,x)(
p(ϑ,x) + p(ϑ)p(x)

)
d̂(ϑ,x)

]

≤ Ep(ϑ,x)

[
log

d(ϑ,x)

d̂(ϑ,x)

]

⇒ 1 ≤ Ep(ϑ,x)

[
exp

(
log

d(ϑ,x)

d̂(ϑ,x)

)]
= Ep(ϑ,x)

[
d(ϑ,x)

d̂(ϑ,x)

]
.

Theorem 2. Any balanced classifier d̂ satisfies Ep(ϑ)p(x)

[
1− d(ϑ,x)

1− d̂(ϑ,x)

]
≥ 1.

Proof. Similar to Theorem 1, see Appendix B.

Theorem 1 shows that, in expectation over the joint distribution p(ϑ,x), a balanced classifier d̂
tends to make predictions whose probability values d̂(ϑ,x) are smaller than the exact probability
values d(ϑ,x). In other words, a balanced classifier d̂ tends to be less confident than the Bayes
optimal classifier d. Similarly, Theorem 2 shows that, in expectation over the product of the marginals
p(ϑ)p(x), a balanced classifier tends to make predictions whose probability values 1− d̂(ϑ,x) are
smaller than the exact probability values 1 − d(ϑ,x), hence showing that a balanced classifier d̂
tends to also be less confident than the Bayes optimal classifier d. We note however that these two
theorems hold only in expectation, which implies that neither d̂(ϑ,x) ≤ d(ϑ,x) for all ϑ,x nor
1− d̂(ϑ,x) ≤ 1− d(ϑ,x) for all ϑ,x can generally be guaranteed.

Theorem 3. The Bayes optimal classifier d(ϑ,x) is balanced.

Proof. Replacing the Bayes optimal classifier

d(ϑ,x) ,
p(ϑ,x)

p(ϑ,x) + p(ϑ)p(x)
(5)

in the integral form of the balancing condition, we have¨
(p(ϑ,x) + p(ϑ)p(x))d(ϑ,x) dϑdx

=

¨ (
p(ϑ,x) + p(ϑ)p(x)

)
p(ϑ,x)

p(ϑ,x) + p(ϑ)p(x)
dϑdx

=

¨
p(ϑ,x) dϑdx = 1.

Theorem 3 states that the Bayes optimal classifier is balanced. Therefore, minimizing the cross-
entropy loss while restricting the model hypothesis space to balanced classifiers results in the
same Bayes optimal classifier of Eqn. 1.

3.2 Balanced neural ratio estimation

We now extend the NRE algorithm to enforce the balancing condition. The previous results
show that enforcing the condition should result in more conservative classifiers d̂ and therefore
to dispersed posterior approximations. Let us first note that Theorem 1 can be expressed as
Ep(x)[Ep(ϑ |x)[d(ϑ,x)/d̂(ϑ,x]] ≥ 1, which can (ideally) be achieved when the inner expecta-
tion is larger than 1 for all x. In this case, the classifier d̂ will be such that d̂(ϑ,x) ≤ d(ϑ,x) in
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regions of high posterior density. Then,

d̂(ϑ,x)

1− d̂(ϑ,x)
≤ d(ϑ,x)

1− d(ϑ,x)
, which is equivalent to r̂(x |ϑ) ≤ r(x |ϑ), (6)

and p̂(ϑ |x) ≤ p(ϑ |x) since p̂(ϑ |x) = p(ϑ)r̂(x |ϑ). Similarly, Theorem 2 implies 1− d(ϑ,x) ≥
1− d̂(ϑ,x) in regions of high prior density, which results in p(ϑ |x) ≤ p̂(ϑ |x). Between those two
opposite effects, the constraint on p̂(ϑ |x) that will dominate depends on whether p(ϑ |x) > p(ϑ)
or p(ϑ |x) < p(ϑ). If p(ϑ |x) > p(ϑ), then p̂(ϑ |x) ≤ p(ϑ |x), whereas if p(ϑ |x) < p(ϑ) then
p(ϑ |x) ≤ p̂(ϑ |x). Overall, imposing the balancing condition will therefore result in approximate
posteriors that lie between the prior and the exact posterior, without being more confident than they
should.

Practically, the balancing condition can be targeted through a regularization penalty. For the binary
cross-entropy L[d̂] , −Ep(ϑ,x)[log d̂(ϑ,x)]−Ep(ϑ)p(x)[log(1− d̂(ϑ,x))] and given that the balanc-
ing condition only depends on samples from p(x)p(ϑ) and p(x,ϑ), the full loss functional including
the balancing condition can be expressed as

Lb
[
d̂
]
, L

[
d̂
]

+ λ
(
Ep(ϑ)p(x)

[
d̂(ϑ,x)

]
+ Ep(ϑ,x)

[
d̂(ϑ,x)

]
− 1
)2

, (7)

where λ is a (scalar) hyper-parameter controlling the strength of the balancing condition’s contribution.
The training procedure is summarized in Algorithm 1. Since a classifier is balanced if the balancing
condition cancels out, λ could, in principle, be set arbitrarily large. However, as the balancing
condition is estimated via Monte Carlo sampling, setting λ to a large value could impair the classifier’s
learning ability. We found that λ = 100 works well across many problem domains with varying
simulation budgets.

Algorithm 1 Training algorithm for Balanced Neural Ratio Estimation (BNRE).
Inputs: Implicit generative model p(x |ϑ) (simulator) and prior p(ϑ)

Outputs: Approximate classifier d̂ψ(ϑ,x) parameterized by ψ
hyper-parameters: Balancing condition strength λ (default = 100) and batch-size n

repeat
Sample data from the joint {ϑi, xi ∼ p(ϑ,x), yi = 1}n/2i=1
Sample data from the marginals {ϑi, xi ∼ p(ϑ)p(x), yi = 0}ni=n/2+1

L[d̂ψ] = − 1
n

∑n
i=1 yi log d̂ψ(ϑi,xi) + (1− yi) log(1− d̂ψ(ϑi,xi))

B[d̂ψ] = 2
n

∑n/2
i=1 d̂ψ(ϑi,xi) + 2

n

∑n
i=n/2+1 d̂ψ(ϑi,xi)

ψ = minimizer_step(params=ψ, loss=L[d̂ψ] + λ(B[d̂ψ]− 1)2)
until convergence
return d̂ψ(ϑ,x).

4 Experiments

We start by providing an extensive validation of BNRE on a broad range of benchmarks demon-
strating that the proposed method alleviates the problem. Section 4.2 follows up with an illus-
trative demonstration on the behaviour of BNRE and its hyper-parameters. Code is available at
https://github.com/montefiore-ai/balanced-nre.

4.1 Extensive validation

Setup We evaluate the expected coverage of posterior estimators produced by both NRE and BNRE
on various problems. Those benchmarks cover a diverse set of problems from particle physics
(Weinberg), epidemiology (Spatial SIR), queueing theory (M/G/1), population dynamics (Lotka
Volterra, and astronomy (Gravitational Waves). They are representative of real scientific applications
of simulation-based inference. A more detailed description of the benchmarks can be found in
Appendix C. The architectures and hyper-parameters used for each problem are defined in Appendix
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D. Our evaluation considers simulation budgets of increasing size, ranging from 210 = 1024 to
217 = 131, 072 samples, and credibility levels from 0.05 to 0.95. For every simulation budget,
we train 5 posterior estimators for 500 epochs and determine the credible region by evaluating the
approximated posterior density function in a discretized and empirically normalized grid of the
parameter space with sufficient resolution. The subsequent credible region is the set of parameters
whose estimated (and normalized) posterior density is higher or equal to an inclusion threshold fitted
to obtain the desired credibility level 1− α. Details on this procedure are described in Appendix E.
The expected coverage probability is estimated on 10000 unseen samples from the joint p(ϑ,x), for
each considered credibility level.

Expected coverage The expected coverage curves and their interpretation are detailed in Figure 1.
We observe that NRE often produces posterior estimators that are overconfident, especially for small
simulation budgets. However, NRE’s reliability increases with the availability of training data. By
contrast, BNRE produces posterior estimators that are conservative on all benchmarks for all
simulation budgets. Figure 2 explores the same phenomena through a quantity which we call the
coverage AUC, highlighting the effect of the simulation budget. Coverage AUC corresponds to
the integrated signed area between the expected coverage curve and the diagonal of a particular
simulation. From this quantity it is evident there is a clear distinction between NRE and BNRE with
respect to the available simulation budget. Both methods have the tendency to converge towards 0,
indicating both methods are moving closer to the Bayes optimal classifier. However, the difference
between these methods lies with how this solution is approached. While NRE can approach this limit
from both sides, BNRE consistently produces coverage AUC’s above 0, corresponding to conservative
posterior approximations, and therefore exhibits the desired behaviour (in expectation).

SLCP Weinberg Spatial SIR M/G/1 Lotka Volterra Gravitational Waves
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0 1
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Calibrated estimator

Figure 1: Expected coverage for increasing simulation budgets. A perfectly calibrated posterior has
an expected coverage probability equal to the nominal coverage probability and hence produces a
diagonal line. A conservative estimator has an expected coverage curve at or above the diagonal line,
while an overconfident estimator produces curves below the diagonal line. The diagnostic therefore
provides an immediate visual interpretation. We observe that NRE can produce overconfident
estimators, while BNRE always produces coverage curves above the diagonal line and therefore the
desired behaviour: conservative posterior approximations. The means over 5 runs are reported.

Statistical performance In addition to the reliability of the posteriors, we evaluate and compare
the statistical performance of the posterior approximations produced by NRE and BNRE. We estimate
the expected approximate log posterior density Ep(ϑ,x)

[
log p̂(ϑ |x)

]
over a large number of pairs

ϑ,x. It captures how well the posterior surrogates p̂(ϑ |x) approximate the true posteriors p(ϑ |x)
since Ep(ϑ,x) [log p̂(ϑ |x)] = −Ep(x)KL [p(ϑ |x) || p̂(ϑ |x)] + Ep(x)Ep(ϑ |x) [log p(ϑ |x)] [21].

Figure 3 shows our results. We observe that enforcing the balancing condition for λ = 100 is
associated with a loss in statistical performance. However, the loss in statistical performance is
eventually recovered by increasing the simulation budget. In fact, practitioners might be inclined to
favor reliability over statistical performance [1], although it is always a trade-off that depends on the
use case. Nevertheless, it is possible to improve the statistical performance by tuning the surrogate,
or by increasing the available simulation budget as we have demonstrated.
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Figure 2: Coverage AUC measures the integrated signed area between the expected coverage curve
and the diagonal. A perfectly calibrated posterior has an expected coverage probability equal to the
nominal coverage probability, producing a diagonal line and has a coverage AUC of 0, as shown
on the left subplot. A conservative estimator on the other hand has a coverage AUC larger than 0
and an overconfident estimator smaller than 0. We observe that while NRE can produce coverage
AUC both below or above 0, BNRE always produces a coverage AUC larger than 0, implying that
its posterior approximations are conservative on average. The means over 5 runs are reported. A
complete overview, including standard deviations, are provided in Appendix F.
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Figure 3: Expected value Ep(ϑ,x)

[
log p̂(ϑ |x)

]
of the approximate log posterior density of the

nominal parameters with respect to the simulation budget. We observe that BNRE produces log
posterior densities lower than NRE. This shows that enforcing the balancing condition to have more
reliable posterior approximates comes at the price of a small loss in information gain. However, BNRE
improves over the prior and eventually converges towards NRE as the simulation budget increases.
Solid lines represent the mean over 5 runs and shaded areas represent the standard deviation.

4.2 In-depth analysis

In this section, we consider the Weinberg benchmark as described in Appendix C. The quality of
the posterior approximations produced by BNRE is initially discussed with respect to the simulation
budget. Afterwards, the effects of the hyper-parameter λ are studied.

Quality assessment Because the expected coverage does not capture the quality of an approxima-
tion in terms of information gain, we complement our assessment with a bias and variance analysis of
the posterior approximations. Let us consider the expected squared error over the approximate poste-
rior Ep̂(ϑ |x)

[
(ϑ−ϑ∗)

2
]
, where ϑ∗ is the ground truth parameter value. With ϑ̄(x) = Ep̂(ϑ |x) [ϑ],

we decompose Ep̂(ϑ |x)

[
(ϑ−ϑ∗)

2
]

as

Ep̂(ϑ |x)

[(
ϑ−ϑ̄(x)

)2]
+ 2

(
ϑ̄(x)− ϑ∗

)
Ep̂(ϑ |x)

[(
ϑ−ϑ̄(x)

)]︸ ︷︷ ︸
=0

+Ep̂(ϑ |x)

[(
ϑ̄(x)− ϑ∗

)2]
= Ep̂(ϑ |x)

[(
ϑ−ϑ̄(x)

)2]
+
(
ϑ̄(x)− ϑ∗

)2
.
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Figure 4: Comparison between NRE and BNRE in terms of expected coverage, bias and variance
on the Weinberg benchmark. On the left side, the coverage is shown with respect to the simulation
budget represented by the colormap. The bias and variance are represented on the right side of the
plot. BNRE is run with λ = 100. Consistent with our previous observations in Figure 3, we observe
that the gap in both bias and variance reduces as the simulation budget increases. Futhermore, in
contrast with NRE, the posterior approximations of BNRE are tending towards being increasingly
calibrated while at the same time being conservative. Solid lines represent the mean over 5 runs and
shaded areas represent the standard deviation.

The expectation over the joint distribution p(ϑ∗,x) of the expected squared error can hence be
decomposed in a bias term defined as

bias(p̂(ϑ |x)) , Ep(ϑ∗,x)

[(
ϑ̄(x)− ϑ∗

)2]
, (8)

which can be interpreted as the expected discrepancy between the nominal value ϑ∗ and the expected
posterior value ϑ̄. The variance term is

variance(p̂(ϑ |x)) , Ep(ϑ∗,x)

[
Ep̂(ϑ |x)

[(
ϑ−ϑ̄(x)

)2]]
(9)

and measures the dispersion of the posterior approximations. Note that these terms differ from
the typical statistical bias and variance of point estimators since we are considering full posterior
estimators. In particular, the bias of the Bayes optimal model does not necessarily reduce to 0.

Figure 4 shows the evolution of expected coverage, bias and variance with respect to the available
simulation budget. By taking all plots into consideration with respect to the simulation budget, we
can validate that – as suggested by theorems 1 and 2 – the increase in expected coverage is tied to an
increase in variance. However, this increase comes at the price of a slight increase in bias. Consistent
with our previous observations in Figure 3, we observe that the gap in both bias and variance reduces
as the simulation budget increases. The bias gets close to 0 for high simulation budgets, showing that
the bias induced by BNRE vanishes as the simulation-budget increases. A bias and variance analysis
for all remaining benchmarks is discussed in Appendix G.

Effects of λ Finally, Figure 5 shows the effect the hyper-parameter λ on the posterior approxima-
tions, their expected coverage and the balancing condition. BNRE is run 5 times for λ ranging from 1
to 215 and for a fixed simulation budget of 1024. Initially, the effect on the posterior approximations
is limited for small values of λ. However, once λ increases, the balancing condition forces the
posterior approximations to become increasingly dispersed and conservative. Eventually, at least
for this specific simulation budget, the posterior approximation reduces to the prior as the balancing
condition becomes dominant over the cross-entropy term. Although the global optimum remains
unchanged as stated by Theorem 3, large λ values are likely to impair the training procedure. In
particular, a large λ can inflate the statistical noise of the Monte Carlo estimation of the balancing
condition and make the classifier d̂ degenerate to a classifier that is trivially balanced such as the
random classifier d̂(ϑ,x) = 0.5 for all ϑ,x. In this case, r̂(x |ϑ) = 1 for all ϑ,x and the approxi-
mate posterior degenerates to the prior. This effect is directly evident from Figure 5, starting from
λ ' 1000. In practice, λ should be sufficiently large such that the approximate classifier is balanced,
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Figure 5: Effect of the hyper-parameter λ for a fixed simulation budget of 1024. The first plot from
left to right shows the evolution of the approximate posterior for a given observation at a fixed ϑ∗,
indicated by the red vertical line. This approximate posterior is compared to NRE trained on a
large simulation budget, shown in yellow and serving as a proxy for the true posterior. The second
plot illustrates the empirical expected coverage. The third plot provides a summarized view of the
second plot using the coverage AUC as summary statistic. The fourth plot shows that classifiers are
becoming increasingly more balanced as λ increases. In addition, the plots show that λ is directly
tied to the statistical performance and reliability of the posterior approximations. Classifiers trained
with small λ’s are associated with (relatively) tight posteriors and overconfident approximations,
while classifiers trained with larger values of λ are increasingly more dispersed and conservative
until the posterior approximations reduce to the prior due to inflated statistical noise of the Monte
Carlo estimation of the balancing condition. Furthermore, the expected coverage plot shows the
estimator is almost perfectly calibrated and implicitly balanced. Immediately visible from the various
posterior approximations in the leftmost subplot, is the fact that BNRE produces overconfident and
biased approximations in the presence of a small simulation budget and a small λ, indicated by
their dark blue color. However, the balancing condition can be applied to the underlying estimator
to improve its reliability by increasing λ. Ideally, λ should be as small as possible to maximize
predictive performance, while at the same time remain sufficiently large to guarantee coverage. From
the 3th subplot from the left, in this particular problem setting, that happens at the point where the
coverage AUC transitions from being negative to positive (λ ≈ 25.0).

while maximizing the statistical performance of the posterior estimator. Therefore, we recommend
to start with a small value for λ and to gradually increase λ until the posterior estimator becomes
conservative. We empirically found λ = 100 to be a reasonably good default value leading to good
performance across all considered benchmarks with various model architectures.

5 Related work

In the Bayesian setting, BNRE improves the reliability of NRE by constraining the classifier hypothesis
space to balanced classifiers, which results in more conservative posteriors. Towards the same objec-
tive of conservative and reliable approximate posteriors, Hermans et al. [1] have shown empirically
that ensembling posterior estimators increases their expected coverage. Since the two solutions are
complementary, we suggest that ensembling BNRE is a safe practice to follow. To the best of our
knowledge, no other related work exists to make Bayesian simulation-based inference algorithms
more conservative and reliable.

In the frequentist setting, Cranmer et al. [6] make use of neural ratio estimation to learn likelihood
ratio test statistics. They show that the classifier d̂ does not need to be exact for the statistic to remain
the most powerful, provided that the approximate likelihood ratio is monotonic with exact likelihood
ratio. When this is not the case, robust inference remains possible by calibrating the classifier, at the
price of a loss in statistical power. Similarly, for frequentist likelihood-free inference, Dalmasso et al.
[22] use classifiers to estimate likelihood ratio statistics and propose a procedure for guaranteeing
valid hypothesis tests and confidence sets. Finally, Dalmasso et al. [23] propose a practical procedure
for the Neyman construction of confidence sets with finite-sample guarantees of nominal coverage as
well as diagnostics that estimate conditional coverage over the entire parameter space.
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In this work, we make the assumption that the simulator is well-specified, in the sense that it accurately
models the real data generation process. However, this assumption is often violated. To overcome this
issue, Generalized Bayesian inference (GBI) extends Bayesian inference by replacing the likelihood
term by with arbitrary loss function [24]. Those loss functions can be designed to mitigate specific
types of misspecifications and enable robust inference, even with intractable likelihoods [25–27].
Power likelihood losses have also been shown to increase robustness to model misspecification [28].
It consists in raising the likelihood to a power to control the impact it has over the prior. The lower
the power of likelihood, the lower the importance given to the data and the higher the uncertainty
of the posterior. It can either be set based on practitioner knowledge or derived from observed data
[29]. Following the same objective, Miller and Dunson [30] introduce coarsened posteriors that
condition on a neighborhood of the empirical data distribution rather than on the data itself. This
neighborhood is derived from a distance function that, when set to the relative entropy, allows the
approximation of coarsened posteriors by a power posterior. Recently, Dellaporta et al. [31] applied
Bayesian non-parametric learning to SBI, making inference with misspecified simulator models both
robust and computationally efficient.

6 Conclusions and future work

In this work, we introduced Balanced Neural Ratio Estimation (BNRE), a variation of neural ratio
estimation designed to produce more conservative posterior estimators, even when the likelihood-to-
evidence ratio estimator is not computationally faithful. We provide theoretical arguments suggesting
that enforcing the balancing condition should lead to more conservative posteriors without sacrificing
exactness in the large simulation budget regime. Our theoretical results are experimentally validated
on benchmarks of varying complexity.

Nevertheless, our inference algorithm comes with limitations that practitioners should keep in mind.
First, we emphasize that theorems 1 and 2 hold only in expectation, which means that we cannot
provide any guarantee at the level of single inferences. Second, the balancing condition is enforced
through a regularization penalty that is not estimated exactly. This implies that the classifier d̂ is rarely
strictly balanced, although close to be, in which case theorems 1 and 2 do not hold. Third, the benefits
of BNRE remain to be assessed in high-dimensional parameter spaces. In particular, the posterior
density must be evaluated on a discretized grid over the parameter space to compute credibility regions,
which currently prohibits the accurate computation of expected coverage in the high-dimensional
setting. In conclusion, BNRE should not be viewed as a way to obtain conservative posterior
estimators with 100% reliability, but rather as a way to increase the reliability of the posterior
estimators with minimal effort and no computational overhead.

Looking forward, the balancing condition could potentially be applied to other simulation-based
inference algorithms. Future works could include a generalization to neural posterior estimation
(NPE). In fact, the likelihood-to-evidence ratio can be extracted from an approximate posterior by
removing its dependence on the prior, log r̂(x |ϑ) = log p̂(ϑ |x)− log p(ϑ), which in turn can be
expressed as a classifier d̂(ϑ,x) = σ(log r̂(x |ϑ)) on which the balancing condition can be evaluated
and enforced. Although our work focuses on amortized approximate inference, the balancing
condition could also be applied to sequential inference algorithms to increase their reliability.

Finally, although our initial motivation is framed within the field of simulation-based inference, our
theoretical results are directly applicable to any binary classification task by replacing the joint and
marginal distributions in the balancing condition with the distributions of the two considered classes.
Therefore, it provides an easy-to-implement modification for high-risk classification problems.
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A Expected coverage as a special case of simulation-based calibration

Simulation-based calibration (SBC) [14] provides a way to diagnose the faithfulness of an approximate
posterior distribution p̂(θ|x). Given an observation x∗ ∼ p(x), Talts et al. [14] prove that, for any
one-dimensional statistic f : Θ 7→ R, the rank statistic

r(ϑ∗) = Ep(ϑ |x∗)

[
1[f(ϑ) ≤ f(ϑ∗)]

]
(10)

of posterior samples ϑ∗ ∼ p(ϑ |x∗) is uniformly distributed over the interval [0, 1]. Consequently,
any deviation from the uniform distribution for the approximate rank statistic

r̂(ϑ∗) = Ep̂(ϑ |x∗)

[
1[f(ϑ) ≤ f(ϑ∗)]

]
(11)

indicates some error in the approximate posterior p̂(ϑ |x∗). As this holds for any statistic f , it also
holds for f(ϑ) = p̂(ϑ |x∗). In this special case, if r̂(ϑ∗) = α, a proportion 1 − α of samples
ϑ ∼ p̂(ϑ |x∗) have an approximate posterior density larger than ϑ∗. In other words, it means that ϑ∗

resides within the 1− α highest posterior density region Θp̂(ϑ |x∗)(1− α) of p̂(ϑ |x∗). Therefore,
we have

P (r̂(ϑ∗) ≥ α) = Ep(ϑ∗ |x∗)

[
1[ϑ∗ ∈ Θp̂(ϑ |x∗)(1− α)]

]
(12)

and since r̂(ϑ∗) should be uniformly distributed, P (r̂(ϑ∗) ≥ α) should be equal to 1−α. In practice,
this test cannot be performed locally for a given x∗ as we cannot sample from the unknown posterior
distribution p(ϑ |x∗). Instead, SBC checks globally that r̂(ϑ∗) is uniformly distributed over pairs
(ϑ∗,x∗) ∼ p(ϑ,x) sampled from the joint distribution, which, in the special case f(ϑ) = p̂(ϑ |x∗),
comes down to check that

Ep(ϑ∗,x∗)

[
1[ϑ∗ ∈ Θp̂(ϑ |x∗)(1− α)]

]
= 1− α (13)

is satisfied for all α ∈ [0, 1]. We recognize here the expected coverage diagnostic used in Hermans
et al. [1] and this work.

B Proof of Theorem 2

Theorem 2. Any balanced classifier d̂ satisfies Ep(ϑ)p(x)

[
1− d(ϑ,x)

1− d̂(ϑ,x)

]
≥ 1.

Proof. From the integral form of the balancing condition, we have

1 =

¨ (
p(ϑ,x) + p(ϑ)p(x)

)
d̂(ϑ,x) dϑdx

= 2−
¨ (

p(ϑ,x) + p(ϑ)p(x)
)
d̂(ϑ,x) dϑdx

=

¨
p(ϑ,x) dϑdx +

¨
p(ϑ)p(x) dϑdx−

¨ (
p(ϑ,x) + p(ϑ)p(x)

)
d̂(ϑ,x) dϑdx

=

¨ (
p(ϑ,x) + p(ϑ)p(x)

)(
1− d̂(ϑ,x)

)
dϑdx,

which implies that
(
p(x,ϑ)+p(ϑ)p(x)

)(
1− d̂(ϑ,x)

)
is a valid density, integrating to 1 and positive

everywhere. Therefore, its Kullback-Leibler divergence with p(ϑ)p(x) is positive and, using Jensen’s
inequality, we have

0 ≤ KL
(
p(ϑ)p(x)

∣∣∣∣(p(ϑ,x) + p(ϑ)p(x)
)(

1− d̂(ϑ,x)
))

≤ Ep(ϑ)p(x)

[
log

p(ϑ)p(x)(
p(ϑ,x) + p(ϑ)p(x)

)(
1− d̂(ϑ,x)

)]

≤ Ep(ϑ)p(x)

[
log

1− d(ϑ,x)

1− d̂(ϑ,x)

]

⇒ 1 ≤ Ep(ϑ)p(x)

[
exp

(
log

1− d(ϑ,x)

1− d̂(ϑ,x)

)]
= Ep(ϑ)p(x)

[
1− d(ϑ,x)

1− d̂(ϑ,x)

]
.
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C Benchmarks

The SLCP simulator models a fictive problem with 5 parameters. The observable x is composed of
8 scalars which represent the 2D-coordinates of 4 points. The coordinate of each point is sampled
from the same multivariate Gaussian whose mean and covariance matrix are parametrized by ϑ. We
consider an alternative version of the original task [4] by inferring the marginal posterior density of 2
of those parameters. In contrast to its original formulation, the likelihood is not tractable due to the
marginalization.

The Weinberg problem [32] concerns a simulation of high energy particle collisions e+e− → µ+µ−.
The angular distributions of the particles can be used to measure the Weinberg angle x in the standard
model of particle physics. From the scattering angle, we are interested in inferring Fermi’s constant
ϑ.

The Spatial SIR model [1] involves a grid-world of susceptible, infected, and recovered individuals.
Based on initial conditions and the infection and recovery rate ϑ, the model describes the spatial
evolution of an infection. The observable x is a snapshot of the grid-world after some fixed amount
of time.

M/G/1 [33] models a processing and arrival queue. The problem is described by 3 parameters ϑ that
influence the time it takes to serve a customer, and the time between their arrivals. The observable x
is composed of 5 equally spaced quantiles of inter-departure times.

The Lotka-Volterra population model [34, 35] describes a process of interactions between a predator
and a prey species. The model is conditioned on 4 parameters ϑ which influence the reproduction
and mortality rate of the predator and prey species. We infer the marginal posterior of the predator
parameters from time series representing the evolution of both populations over time. The specific
implementation is based on a Markov Jump Process as in Papamakarios et al. [4].

Gravitational Waves (GW) are ripples in space-time emitted during events such as the collision of two
black-holes. They can be detected through interferometry measurements x and convey information
about celestial bodies, unlocking new ways to study the universe. We consider inferring the masses ϑ
of two black-holes colliding through the observation of the gravitational wave as measured by LIGO’s
dual detectors [36, 37].

D Architectures and hyper-parameters

Table 1 summarizes the architectures and hyper-parameters used for each benchmark. The classifier
architectures are separated into two parts: the embedding and the head networks. The embedding
network φ compresses the observable into a set of features. The head network f then uses those
features φ(x) concatenated with the parameters ϑ to predict the class,

d̂(ϑ,x) = f(ϑ, φ(x)).

The learning rate is scheduled during training. Table 1 provides the initial learning rates. Those are
then divided by 10 each time no improvement was observed on the validation loss for 10 epochs.
Further details can be found in the code repository attached to this manuscript.

Table 1: Architectures and training hyper-parameters
SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW

Embedding network None None None CNN Resnet-18 CNN
Embedding layers / / / 8 / 13
Embedding channels / / / 8 / 16
Convolution type / / / Conv1D Conv2D Dilated Conv1D
Head network MLP MLP MLP MLP MLP MLP
Head layers 6 6 6 3 3 3
Head hidden neurons 256 256 256 128 256 128
Learning rate 0.001 0.001 0.001 0.001 0.001 0.001
Epochs 500 500 500 500 500 500
Batch size 256 256 256 256 256 256
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E Estimation of the expected coverage probability

We describe in this section the methodology used to estimate the expected coverage probability

Ep(ϑ,x)

[
1
[
ϑ ∈ Θp̂(ϑ |x)(1− α)

]]
.

We consider n test simulations (ϑ∗i ,xi) ∼ p(ϑ)p(x |ϑ) and compute their associated approximate
posteriors p̂(ϑ |xi) in a discretized and empirically normalized grid of the parameter space. The
associated credible region is the highest density credible region, i.e. a credible region of the form

Θp̂(ϑ |xi)(1− α) = {ϑ : p̂(ϑ |xi) ≥ γ} . (14)

The threshold γ is computed using a dichotomic search to produce a credible region of level 1−α. We
then estimate the empirical expected coverage probability by the proportion of nominal parameters
ϑ∗i that falls in their associated credible region Θp̂(ϑ |xi)(1− α),

1

n

n∑
i=1

1
[
ϑ∗i ∈ Θp̂(ϑ |xi)(1− α)

]
.

F Standard deviations of Coverage AUCs

Figure 6 shows the coverage AUC for various simulation budgets. The mean and standard deviation
over 5 runs are reported.
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Figure 6: Coverage AUC measures the integrated signed area between the expected coverage curve
and the diagonal. A perfectly calibrated posterior has an expected coverage probability equal to the
nominal coverage probability, producing a diagonal line and has a coverage AUC of 0, as shown
on the left subplot. A conservative estimator on the other hand has a coverage AUC larger than 0
and an overconfident estimator smaller than 0. We observe that while NRE can produce coverage
AUC both below or above 0, BNRE always produces a coverage AUC larger than 0, implying that its
posterior approximations are conservative. Solid lines represent the mean over 5 runs and shaded
areas represent the standard deviation.

G Complete bias and variance analysis

Figure 7 shows the evolution of the bias and variance w.r.t. the simulation budget on a wide variety
of benchmarks. We observe that observations made on Weinberg in Section 4 generalize to all
benchmarks. The variance obtained with BNRE is always higher or equal than the one obtained with
NRE as suggested by Theorems 1 and 2. In addition, as suggested by Theorem 3, the bias and variance
obtained with BNRE converges, as NRE, to the Bayes optimal solution.
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Figure 7: Evolution of the bias and variance w.r.t. the simulation budget. The bias and variance are
estimated as described in Section 4 and are scaled to account for the prior’s spread, permitting a direct
comparison between the benchmarks. Marginals are considered when dealing with multidimensional
parameter spaces. Those are denoted by an index following the benchmark name.
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