Retroviruses and their host have co-evolved in a delicate balance between viral replication and survival of the infected cell. In this equilibrium, restriction factors expressed by infected cells control different steps of retroviral replication such as entry, uncoating, nuclear import, expression, or budding. Here, we describe a mechanism of restriction against human T-cell leukemia virus type 1 (HTLV-1) by the helicase-like transcription factor (HLTF). We show that RNA and protein levels of HLTF are reduced in primary T-cells of HTLV-1 infected subjects, suggesting a clinical relevance. We further demonstrate that the viral oncogene Tax represses HLTF transcription via the Enhancer of zeste homolog 2 (EZH2) methyltransferase of the Polycomb repressive complex 2 (PRC2). The Tax protein also directly interacts with HLTF and induces its proteasomal degradation. RNA interference and gene transduction in HTLV-1 infected T-cells derived from patients indicate that HLTF is a restriction factor. Restoring the normal levels of HLTF expression induces the dispersal of the Golgi apparatus and overproduction of secretory granules. By synergizing with Tax-mediated NF-B activation, physiologically-relevant levels of HLTF intensify the autophagic flux. Increased vesicular trafficking leads to an enlargement of the lysosomes and the production of large vacuoles containing viral particles. HLTF induction in HTLV-1 infected cells significantly increases the percentage of defective virions. In conclusion, HLTF-mediated activation of the autophagic flux blunts the infectious replication cycle of HTLV-1, revealing a new mode of viral restriction.
Research Center/Unit :
GIGA-CME - GIGA Cancer-Cellular and Molecular Epigenetics - ULiège
✱ These authors have contributed equally to this work.
Language :
English
Title :
The helicase-like transcription factor redirects the autophagic flux and restricts human T-cell leukemia virus type 1 infection
Publication date :
2023
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
ISSN :
0027-8424
eISSN :
1091-6490
Publisher :
National Academy of Sciences, Washington, United States - District of Columbia
Volume :
120
Issue :
31
Pages :
e2216127120
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Télévie Belgian Foundation Against Cancer Leon Fredericq Foundation
Funding number :
CDR J.0195.21; PDR T.0261.20
Funding text :
Télévie grants from the Belgian National Fund for Scientific Research; Commission permanente facultaire à la recherche; the Léon Fredericq Foundation. A.B.
V. M. Zhdanov, F. I. Yershov, L. V. Uryvayev, D. I. Ivanovsky, Formation of infectious arbovirus ribonucleoprotein in subcellular structures. Nature 228, 1192–1194 (1970).
J. Boeke, J. Stoye, “Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements” in Retroviruses (Cold Spring Harbor Laboratory Press, 1997), pp. 343–435.
G. Forlani, M. Shallak, E. Ramia, A. Tedeschi, R. S. Accolla, Restriction factors in human retrovirus infections and the unprecedented case of CIITA as link of intrinsic and adaptive immunity against HTLV-1. Retrovirology 16, 1–12 (2019).
R. Farrukee, M. Ait-Goughoulte, P. M. Saunders, S. L. Londrigan, P. C. Reading, Host cell restriction factors of paramyxoviruses and pneumoviruses. Viruses 12, 1381 (2020).
C. Chamontin, G. Bossis, S. Nisole, N. J. Arhel, G. Maarifi, Regulation of viral restriction by post-translational modifications. Viruses 13, 2197 (2021).
A. Carcone, C. Journo, H. Dutartre, Is the HTLV-1 retrovirus targeted by host restriction factors? Viruses 14, 1611 (2022).
M. Colomer-Lluch, A. Ruiz, A. Moris, J. G. Prado, Restriction factors: From intrinsic viral restriction to shaping cellular immunity against HIV-1. Front. Immunol. 9, 2876 (2018).
M. Mansouri et al., Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi’s sarcoma-associated herpesvirus. J. Virol. 83, 9672–9681 (2009).
Y. Iwabu et al., HIV-1 accessory protein Vpu internalizes cell-surface BST-2/Tetherin through transmembrane interactions leading to lysosomes. J. Biol. Chem. 284, 35060–35072 (2009).
R. Benyair, A. Eisenberg-Lerner, Y. Merbl, Maintaining golgi homeostasis: A balancing act of two proteolytic pathways. Cells 11, 780 (2022).
T. Vescovo, B. Pagni, M. Piacentini, G. M. Fimia, M. Antonioli, Regulation of autophagy in cells infected with oncogenic human viruses and its impact on cancer development. Front. cell Dev. Biol. 8, 47 (2020).
N. Ducasa et al., Autophagy in human T-cell leukemia virus type 1 (HTLV-1) induced leukemia. Front. Oncol. 11, 967 (2021).
N. M. Kocaturk, D. Gozuacik, Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front. Cell Dev. Biol. 6, 128 (2018).
H. Y. Winter, S. J. Marriott, Human T-cell leukemia virus type 1 tax enhances serum response factor DNA binding and alters site selection. J. Virol. 81, 6089–6098 (2007).
K. T. Jeang, Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: Cellular signaling through NF-kappa B. Cytokine Growth Factor Rev. 12, 207–217 (2001).
X. H. Li, R. B. Gaynor, Regulation of NF-κB by the HTLV-1 Tax Protein. Gene Expr. 7, 233–245 (1999).
S.-W. Tang, C.-Y. Chen, Z. Klase, L. Zane, K.-T. Jeang, The cellular autophagy pathway modulates human T-cell leukemia virus type 1 replication. J. Virol. 87, 1699–1707 (2013).
T. Ren et al., HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains. Oncogene 34, 334–345 (2015).
Y.-K. Ho et al., HTLV-1 Tax stimulates ubiquitin E3 Ligase, ring finger protein 8, to assemble lysine 63-linked polyubiquitin chains for TAK1 and IKK activation. PLoS Pathog. 11, e1005102 (2015).
Y. Shibata et al., HTLV-1 Tax induces formation of the active macromolecular IKK complex by generating Lys63- and Met1-linked hybrid polyubiquitin chains. PLoS Pathog. 13, e1006162 (2017).
S. Mohanty et al., The E3/E4 ubiquitin conjugation factor UBE4B interacts with and ubiquitinates the HTLV-1 Tax oncoprotein to promote NF-κB activation. PLoS Pathog. 16, e1008504 (2020).
A. Schwob et al., SQSTM-1/p62 potentiates HTLV-1 Tax-mediated NF-κB activation through its ubiquitin binding function. Sci. Rep. 9, 1–17 (2019).
R. G. Andrade et al., Strong correlation between tax and HBZ mRNA expression in HAM/TSP patients: Distinct markers for the neurologic disease. J. Clin. Virol. 56, 135–140 (2013).
Y. Yamano et al., Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy (HAM/ TSP). Blood 99, 88–94 (2002).
S. Takeda et al., Genetic and epigenetic inactivation oftax gene in adult T-cell leukemia cells. Int. J. Cancer 109, 559–567 (2004).
G. Belrose et al., Effects of valproate on Tax and HBZ expression in HTLV-1 and HAM/TSP T lymphocytes. Blood 118, 2483–2491 (2011).
M. R. Billman, D. Rueda, C. R. M. Bangham, Single-cell heterogeneity and cell-cycle-related viral gene bursts in the human leukaemia virus HTLV-1. Wellcome Open Res. 2, 87 (2017).
D. Fujikawa et al., Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood 127, 1790–1802 (2016).
P. Cassonnet et al., Benchmarking a luciferase complementation assay for detecting protein complexes. Nat. Methods 8, 990–992 (2011).
M. Mahgoub et al., Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells. Proc. Natl. Acad. Sci. U.S.A. 115, E1269–E1278 (2018).
R. Rousset, C. Desbois, F. Bantignies, P. Jalinot, Effects on NF-kappa B1/p105 processing of the interaction between the HTLV-1 transactivator Tax and the proteasome. Nature 381, 328–331 (1996).
S. Alais, H. Dutartre, R. Mahieux, Quantitative analysis of human T-Lymphotropic virus type 1 (HTLV-1) infection using co-culture with jurkat LTR-Luciferase or Jurkat LTR-GFP reporter cells. Methods Mol. Biol. 1582, 47–55 (2017).
G. Bai et al., HLTF Promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis. Mol. Cell 78, 1237–1251.e7 (2020).
Z. L. Chu, J. A. DiDonato, J. Hawiger, D. W. Ballard, The tax oncoprotein of human T-cell leukemia virus type 1 associates with and persistently activates IkappaB kinases containing IKKalpha and IKKbeta. J. Biol. Chem. 273, 15891–15894 (1998).
A. Criollo et al., The IKK complex contributes to the induction of autophagy. EMBO J. 29, 619–631 (2010).
J. Huang, T. Ren, H. Guan, Y. Jiang, H. Cheng, HTLV-1 Tax is a critical lipid raft modulator that hijacks IkappaB kinases to the microdomains for persistent activation of NF-kappaB. J. Biol. Chem. 284, 6208–6217 (2009).
S. Kim, A. M. Nair, S. Fernandez, L. Mathes, M. D. Lairmore, Enhancement of LFA-1-mediated T cell adhesion by human T lymphotropic virus Type 1 p12I1. J. Immunol. 176, 5463–5470 (2006).
I. F. Grigsby et al., Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stochiometry. Retrovirology 7, 1–13 (2010).
I. Miyoshi et al., Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 294, 770–771 (1981).
J. Yan, M. C. Shun, Y. Zhang, C. Hao, J. Skowronski, HIV-1 Vpr counteracts HLTF-mediated restriction of HIV-1 infection in T cells. Proc. Natl. Acad. Sci. U.S.A. 116, 9568–9577 (2019).
J. O. Maldonado, S. Cao, W. Zhang, L. M. Mansky, Distinct morphology of human T-cell leukemia virus Type 1-like particles. Viruses 8, 132 (2016).
D. O. Pinto et al., Extracellular vesicles from HTLV-1 infected cells modulate target cells and viral spread. Retrovirology 18, 1–27 (2021).
A. Bazarbachi, Tax fingerprint in adult T-cell leukemia. Blood 127, 1737–1738 (2016).
Y. J. Achar et al., Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Res. 43, 10277–10291 (2015).
H. Lahouassa et al., HIV-1 Vpr degrades the HLTF DNA translocase in T cells and macrophages. Proc. Natl. Acad. Sci. U.S.A. 113, 5311–5316 (2016).
K. Hrecka et al., HIV-1 and HIV-2 exhibit divergent interactions with HLTF and UNG2 DNA repair proteins. Proc. Natl. Acad. Sci. U.S.A. 113, E3921–E3930 (2016).
K. Nightingale et al., High-definition analysis of host protein stability during human cytomegalovirus infection reveals antiviral factors and viral evasion mechanisms. Cell Host. Microbe 24, 447–460.e11 (2018).
A. Presle et al., The viral restriction factor tetherin/BST2 tethers cytokinetic midbody remnants to the cell surface. Curr. Biol. 31, 2203–2213.e5 (2021).
A. P. M. Cloherty, A. G. Rader, B. Compeer, C. M. S. Ribeiro, Human TRIM5α: Autophagy connects cell-intrinsic HIV-1 restriction and innate immune sensor functioning. Viruses 13, 320 (2021).
A. Eisenberg-Lerner et al., Golgi organization is regulated by proteasomal degradation. Nat. Commun. 11, 409 (2020).
D. Ganesan, Q. Cai, Understanding amphisomes. Biochem. J. 478, 1959–1976 (2021).
M. E. G. de Araujo, G. Liebscher, M. W. Hess, L. A. Huber, Lysosomal size matters. Traffic 21, 60–75 (2020).
C. Huynh, D. Roth, D. M. Ward, J. Kaplan, N. W. Andrews, Defective lysosomal exocytosis and plasma membrane repair in Chediak-Higashi/beige cells. Proc. Natl. Acad. Sci. U.S.A. 101, 16795–16800 (2004).