Article (Scientific journals)
Neural posterior estimation for exoplanetary atmospheric retrieval
Vasist, Malavika; Rozet, François; Absil, Olivier et al.
2023In Astronomy and Astrophysics, 672, p. 147
Peer Reviewed verified by ORBi
 

Files


Full Text
aa45263-22.pdf
Author postprint (2.32 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Methods: numerical; Planets and satellites: atmospheres; Radiative transfer; Approximate Bayesian inference; Atmospheric properties; Atmospheric retrieval; Exo-planets; Method: numerical; Physical parameters; Posterior distributions; Posterior estimations; Sampling-based; Astronomy and Astrophysics; Space and Planetary Science; astro-ph.EP; astro-ph.IM
Abstract :
[en] Context. Retrieving the physical parameters from spectroscopic observations of exoplanets is key to understanding their atmospheric properties. Exoplanetary atmospheric retrievals are usually based on approximate Bayesian inference and rely on sampling-based approaches to compute parameter posterior distributions. Accurate or repeated retrievals, however, can result in very long computation times due to the sequential nature of sampling-based algorithms. Aims. We aim to amortize exoplanetary atmospheric retrieval using neural posterior estimation (NPE), a simulation-based inference algorithm based on variational inference and normalizing flows. In this way, we aim (i) to strongly reduce inference time, (ii) to scale inference to complex simulation models with many nuisance parameters or intractable likelihood functions, and (iii) to enable the statistical validation of the inference results. Methods. We evaluated NPE on a radiative transfer model for exoplanet spectra (petitRADTRANS), including the effects of scattering and clouds. We trained a neural autoregressive flow to quickly estimate posteriors and compared against retrievals computed with MultiNest. Results. We find that NPE produces accurate posterior approximations while reducing inference time down to a few seconds. We demonstrate the computational faithfulness of our posterior approximations using inference diagnostics including posterior predictive checks and coverage, taking advantage of the quasi-instantaneous inference time of NPE. Our analysis confirms the reliability of the approximate posteriors produced by NPE. Conclusions. The inference results produced by NPE appear to be accurate and reliable, establishing this algorithm as a promising approach for atmospheric retrieval. Its main benefits come from the amortization of posterior inference: once trained, inference does not require on-the-fly simulations and can be repeated several times for many observations at a very low computational cost. This enables efficient, scalable, and testable atmospheric retrieval.
Disciplines :
Space science, astronomy & astrophysics
Computer science
Author, co-author :
Vasist, Malavika ;  Université de Liège - ULiège > Faculté des Sciences > Form. doct. sc. (sc. spatiales - paysage)
Rozet, François  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Absil, Olivier  ;  Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Mollière, Paul;  Max-Planck-Institut für Astronomie, Heidelberg, Germany
Nasedkin, Evert;  Max-Planck-Institut für Astronomie, Heidelberg, Germany
Louppe, Gilles  ;  Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Big Data
Language :
English
Title :
Neural posterior estimation for exoplanetary atmospheric retrieval
Publication date :
April 2023
Journal title :
Astronomy and Astrophysics
ISSN :
0004-6361
eISSN :
1432-0746
Publisher :
EDP Sciences
Volume :
672
Pages :
A147
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 819155 and 832428), and from the Wallonia-Brussels Federation (grant for Concerted Research Actions). G.L. is recipient of the ULiège – NRB Chair on Big Data and is thankful for the support of the NRB.This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreements No 819155 and 832428), and from the Wallonia-Brussels Federation (grant for Concerted Research Actions).
Commentary :
The paper has been submitted to AandA after a final revision
Available on ORBi :
since 22 May 2023

Statistics


Number of views
53 (14 by ULiège)
Number of downloads
30 (5 by ULiège)

Scopus citations®
 
15
Scopus citations®
without self-citations
13
OpenCitations
 
0
OpenAlex citations
 
14

Bibliography


Similar publications



Contact ORBi