
Astronomy
&Astrophysics

A&A 672, A147 (2023)
https://doi.org/10.1051/0004-6361/202245263
© The Authors 2023

Neural posterior estimation for exoplanetary atmospheric
retrieval

Malavika Vasist1,2,⋆, François Rozet2,⋆, Olivier Absil1,⋆⋆, Paul Mollière3, Evert Nasedkin3, and Gilles Louppe2

1 STAR Institute, University of Liège, 19C Allée du Six-Août, 4000 Liège, Belgium
e-mail: mv.vasist@uliege.be

2 Montefiore Institute, University of Liège, 10 Allée de la Découverte, 4000 Liège, Belgium
3 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

Received 21 October 2022 / Accepted 10 February 2023

ABSTRACT

Context. Retrieving the physical parameters from spectroscopic observations of exoplanets is key to understanding their atmospheric
properties. Exoplanetary atmospheric retrievals are usually based on approximate Bayesian inference and rely on sampling-based
approaches to compute parameter posterior distributions. Accurate or repeated retrievals, however, can result in very long computation
times due to the sequential nature of sampling-based algorithms.
Aims. We aim to amortize exoplanetary atmospheric retrieval using neural posterior estimation (NPE), a simulation-based inference
algorithm based on variational inference and normalizing flows. In this way, we aim (i) to strongly reduce inference time, (ii) to scale
inference to complex simulation models with many nuisance parameters or intractable likelihood functions, and (iii) to enable the
statistical validation of the inference results.
Methods. We evaluated NPE on a radiative transfer model for exoplanet spectra (petitRADTRANS), including the effects of scattering
and clouds. We trained a neural autoregressive flow to quickly estimate posteriors and compared against retrievals computed with
MultiNest.
Results. We find that NPE produces accurate posterior approximations while reducing inference time down to a few seconds. We
demonstrate the computational faithfulness of our posterior approximations using inference diagnostics including posterior predictive
checks and coverage, taking advantage of the quasi-instantaneous inference time of NPE. Our analysis confirms the reliability of the
approximate posteriors produced by NPE.
Conclusions. The inference results produced by NPE appear to be accurate and reliable, establishing this algorithm as a promising
approach for atmospheric retrieval. Its main benefits come from the amortization of posterior inference: once trained, inference does
not require on-the-fly simulations and can be repeated several times for many observations at a very low computational cost. This
enables efficient, scalable, and testable atmospheric retrieval.
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1. Introduction

The characterization of exoplanet atmospheres is concerned
with the identification of model parameters that best describe
observed exoplanet spectra. More specifically, atmospheric
retrieval aims to relate exoplanet spectra to the parameters
of detailed forward models of atmospheric physico-chemical
processes (Madhusudhan 2018). In this setting, Bayesian infer-
ence provides a principled framework to identify parameters
that match the observations. The most widely used inference
methods for exoplanet retrieval are Markov chain Monte Carlo
(MCMC) algorithms (Burningham et al. 2017; Madhusudhan
et al. 2011, 2014; Line et al. 2013, 2014; Wakeford et al. 2017;
Evans et al. 2017; Blecic 2016; Ballard et al. 2011) and variants
of nested sampling (Lavie et al. 2017; Mollière et al. 2020;
Todorov et al. 2016; Benneke & Seager 2013; Waldmann et al.
2015a,b; Oreshenko et al. 2017; MacDonald & Madhusudhan
2017; Gandhi & Madhusudhan 2018). Although both families
of sampling-based algorithms are asymptotically exact, their
⋆ F.R.S.-FNRS PhD Research Fellow.
⋆⋆ F.R.S.-FNRS Senior Research Associate.

sequential nature is often an obstacle to fast, scalable, and
testable inference (Cole et al. 2022). First, sampling-based
algorithms can take a few hours up to a few days of computation
for each single retrieval. Processing just a few observations
can quickly add up to several weeks of computing time, which
prevents detailed retrievals for large catalogs of observations.
With the advent of the James Webb Space Telescope (JWST),
and of future missions expected to produce a vast number of
observations, this becomes largely inapplicable. Second, the
necessary computational requirements to maintain accurate
results often scale poorly with the number of model param-
eters. This issue is especially salient for simulation models
that include many nuisance parameters, whose posteriors are
typically not of direct interest but need to be computed anyway
because sampling-based approaches require sampling the full
joint posterior. Third, the reliability and statistical rigor of the
approximations produced by sampling-based algorithms are
difficult to assess. Statistical validation based on repeated infer-
ences, such as simulation-based calibration (Talts et al. 2018)
or expected coverage (Hermans et al. 2021), is not feasible in a
reasonable time.
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Nested sampling and MCMC inference algorithms also pose
fundamental limits to the class of possible simulation models
describing the physics of exoplanet atmospheres. To operate,
they require an explicit and tractable expression of the likeli-
hood function, which generally constrains simulation models to
forward processes that are mainly deterministic, or involve only
a few nuisance parameters. Yet, when data quality will make
it possible to account for more details in the cloud physics,
more sophisticated simulation models can involve a large num-
ber of interfering stochastic processes, resulting in an implicit or
intractable likelihood. Possible examples include the cloud for-
mation mechanisms (e.g., via seeding by nucleation, Lee et al.
2018), their growth (e.g., via coagulation or surface growth,
Helling & Woitke 2006), their diffusion processes and interac-
tions with the surrounding thermodynamic conditions (e.g., by
settling and mixing, Woitke et al. 2020), or their evolution with
time (e.g., by ionization). Retrieval with MCMC or nested sam-
pling becomes impossible in these scenarios, at least not without
simplifying assumptions.

A possible way to speed up the inference process, and
thereby allow the introduction of more complex simulation mod-
els in atmospheric retrievals, is to rely on recent advances in
the field of machine learning. For instance, training a ran-
dom forest (Márquez-Neila et al. 2018; Nixon & Madhusudhan
2020), a generative adversarial network (Zingales & Waldmann
2018), an ensemble of Bayesian neural networks (Cobb et al.
2019), or a convolutional neural network (Ardévol Martínez et al.
2022) to retrieve model parameters from noisy data results in
quasi-instantaneous retrieval, after paying the upfront cost of
generating a training dataset and of training the network. How-
ever, this comes at the expense of posterior accuracy, as the
resulting parameter distributions are generally not true posteri-
ors in the Bayesian sense, and are sometimes even enforced to
follow a multivariate Gaussian distribution. Another approach
is to use machine learning to generate more informed, narrower
priors (Hayes et al. 2020), or even to replace the exoplanet atmo-
sphere simulator by a surrogate model (Himes et al. 2022). These
methods have the potential of providing more accurate posterior
distributions, but at the expense of a more modest improvement
in terms of inference time.

The rapidly developing field of simulation-based inference
is now offering new tools to tackle these challenges (Cranmer
et al. 2020). For instance, Yip et al. (2022) perform retrieval
using the approach of variational inference with a predefined
likelihood, to estimate the posterior distribution of a single spec-
trum, in an un-amortized fashion. Here, we propose to make use
of neural posterior estimation (NPE, Papamakarios & Murray
2016; Lueckmann et al. 2017; Greenberg et al. 2019), an approach
based on simulation-based inference that makes use of deep
learning to amortize the retrieval procedure and bypass the eval-
uation of the likelihood function. With NPE, a neural network
learns a surrogate posterior as an observation-parameterized
conditional probability distribution, from precomputed simula-
tions over the full prior space of interest. In this way, retrievals
become fast, scalable, and testable. The rest of the paper is struc-
tured as follows. In Sect. 2, we formalize atmospheric retrieval
as a Bayesian inference problem, and describe the NPE approach
for approximate inference. We also describe the atmospheric
radiative transfer model used in this work. Then, in Sect. 3, we
describe the setup of our experimental study, present our infer-
ence results, compare them against those obtained with nested
sampling, and demonstrate their validity using inference diag-
nostics. In Sects. 4 and 5, we discuss related work and finally
conclude our study.

2. Methods

2.1. Simulation-based inference

In all generality, simulators are forward stochastic models or
computer programs that generate synthetic observations accord-
ing to input parameters. Formally, a stochastic model takes a
vector of parameters of interest θ as input, samples internally a
series of nuisance parameters or latent variables z ∼ p(z|θ) and,
finally, produces an observation x ∼ p(x|z, θ) as output, thereby
defining an implicit likelihood p(x|θ). The likelihood is often
intractable as it corresponds to

p(x|θ) =
�

p(x, z|θ) dz =
�

p(x|z, θ)p(z|θ) dz, (1)

the integral of the joint likelihood p(x, z|θ) over the latent space.
Even if the likelihood is tractable, which is sometimes the case
with physical simulators, the posterior

p(θ|x) =
p(x|θ)p(θ)

p(x)
=

p(x|θ)p(θ)�
p(x|θ′)p(θ′) dθ′

(2)

involves an intractable integral over the parameter space, which
leads to challenging Bayesian inference problems for simulators
with medium to high-dimensional parameter spaces.

These computational obstacles can be bypassed using mod-
ern simulation-based inference algorithms. Instead of relying on
the likelihood function to perform inference, simulation-based
approaches use deep neural networks to parameterize univer-
sal density estimators and estimate the posterior. Among the
simulation-based inference algorithms, neural posterior estima-
tion consists in training a conditional normalizing flow pϕ(θ|x)
with parameters ϕ to approximate the posterior distribution
p(θ|x). A normalizing flow (Papamakarios et al. 2021, see
Appendix A for further details) is a composition of invertible and
differentiable transformations applied to a simple distribution
(e.g., a normal distribution), thereby defining a complex distri-
bution that can be efficiently evaluated and sampled from. The
transformations are parametrized by invertible neural networks,
making normalizing flows universally expressive parametric dis-
tributions that can be trained to approximate other distributions.
In our case, training is based on amortized variational inference
and amounts to the minimization of the expected Kullback-
Leibler (KL) divergence between p(θ|x) and pϕ(θ|x), (Agakov
2004), that is

ϕ∗ = arg min
ϕ
Ep(x)

[
KL

(
p(θ|x) ∥ pϕ(θ|x)

)]
= arg min

ϕ
Ep(x) Ep(θ|x)

[
log

p(θ|x)
pϕ(θ|x)

]
= arg min

ϕ
Ep(θ,x)

[
− log pϕ(θ|x)

]
. (3)

Remarkably, the amortization over p(x) of the variational infer-
ence objective makes it possible to bypass the sampling or the
evaluation of the unknown posterior p(θ|x) in the second line
above. Indeed, the double expectation Ep(x)Ep(θ|x) can be rewrit-
ten as an expectation Ep(θ,x) over the joint distribution, which
we can easily sample in the forward direction as p(θ, x) =
p(θ)p(x|θ), regardless of whether the likelihood is tractable or
not. Once the normalizing flow is trained, evaluating and sam-
pling the posterior density pϕ(θ|x) becomes as fast as a forward
pass through the network. Inference can be repeated any num-
ber of times with different observations, without having to
regenerate data from the simulation model.
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2.2. Atmospheric radiative transfer model

The atmospheric model used in this study consists of a
deterministic atmospheric forward model implemented with
petitRADTRANS, together with a noise model accounting for
measurement noise. petitRADTRANS (Mollière et al. 2019) is a
radiative transfer model used to generate emission and transmis-
sion spectra for exoplanets with cloudy and clear atmospheres
including scattering, as described in Mollière et al. (2020). It
includes a parameterized temperature structure and cloud prop-
erties. We used the disequilibrium chemistry emission model
predefined in petitRADTRANS to compute an emission spectrum
based on disequilibrium carbon chemistry, equilibrium clouds,
and a spline temperature-pressure profile, defined by 16 parame-
ters in total. We walk through these parameterizations briefly in
the following paragraphs.

The temperature structure uses both freely variable and
physically motivated parameterizations based on atmospheric
altitudes. The optical depth defined as τ = δPα is parameterized
as a function of the pressure P while keeping δ and α as model
parameters. The temperature structure is split into three parts.
The mid altitude (photosphere), with an optical depth τ > 0.1,
models the temperature according to the Eddington approxi-
mation (Eq. (2) of Mollière et al. 2020) with Tint as a model
parameter. In the upper altitude with an optical depth τ < 0.1, the
structure is computed by a cubic spline interpolation between T1,
T2, and T3 considered as model parameters. In low altitudes (tro-
posphere), wherever the atmospheric temperature gradient of the
Eddington approximation is greater than the moist adiabatic gra-
dient (i.e,∇edd > ∇ad), convection ensues. The∇ad is interpolated
from a T -P-[Fe/H]-C/O space of a chemical equilibrium table.
Here the metallicity [Fe/H], and the carbon-to-oxygen number
ratio C/O, are also model parameters.

Once the P − T profile is constructed, equilibrium cloud
abundances are calculated in the form of their mass frac-
tions, where they are modified from solar abundances based on
the model parameters [Fe/H] and C/O. The cloud mass frac-
tions are further scaled with the scaling parameters log X̃Fe and
log X̃MgSiO3 , where X̃i = Xi

0/X
i
eq is the ratio of the cloud mass

fraction Xi
0 at the cloud base (i.e., at pressure Pbase) to the mass

fraction Xi
eq predicted at the same location for the cloud species

when assuming equilibrium condensation. The cloud mass frac-
tion decays with altitude based on the settling parameter fsed:

X(P) = X0

(
P

Pbase

) fsed

. (4)

For P > Pbase the cloud mass fraction is zero. The other cloud
parameters include the vertical eddy diffusion coefficient Kzz
and the width of the log normal size distribution σg defined
in the Ackerman & Marley (2001) cloud model, called Cloud
Model 1 in Mollière et al. (2020). The chemical abundances
for species H2O, CO, CH4, NH3, CO2, H2S, VO, TiO, PH3,
Na, and K are interpolated from the chemical equilibrium table
calculated with easyCHEM (Mollière et al. 2017) as a function
of T -P-[Fe/H]-C/O. The model parameter log Pquench is used to
account for disequilibrium chemistry through atmospheric mix-
ing. For pressures below Pquench, the mass fractions of CH4,
H2O, and CO are held constant at their values at P = Pquench.
The gas opacities required for the radiative transfer solution are
obtained by combining the correlated k (opacity) tables of indi-
vidual atmospheric absorbers in the resort-rebin fashion (e.g.,
Mollière et al. 2015; Amundsen et al. 2017). The surface grav-
ity (log g) and radius (Rp) of the planet are considered as model

parameters to calculate the emission flux. The radiative transfer
equations are then solved using the Feautrier method (Feautrier
1964) as in the self-consistent petitCODE (Mollière et al.
2015, 2017), which also includes isotropic scattering. Following
Mollière et al. (2020), we rebinned down the default wavelength
spacing λ/∆λ = 1000 to a spacing of 400 between 0.95 and
2.45 µm. This was done by generating the binned correlated-
k opacities in petitRADTRANS, and using them instead of the
original opacities to generate linearly binned spectra within the
same wavelength range, resulting in vectors of 379 elements.
We denote the output spectrum produced by this first simulation
stage as f (θ), where θ contains all 16 model parameters.

To account for measurement noise and make the simulation
model similar to instrumental data, we considered a Gaussian
noise model with a standard deviation σ. The spectra f (θ) gener-
ated by petitRADTRANS were randomly perturbed with additive
noise ϵ ∼ N(0, σ2), where ϵ ∈ R379 is a vector of random noise
instances in each wavelength bin. Here we assumed the same
noise variance in each wavelength bin for the sake of simplic-
ity, but more complex noise models (including noise covariance)
could be used in our simulator. The final simulator output is
given by x = f (θ) + ϵ.

3. Atmospheric retrieval

We start our empirical evaluation of NPE-based atmospheric
retrieval by describing the creation of the training data in
Sect. 3.1, together with the training protocol and a description
of the architecture of the neural posterior estimator pϕ(θ|x). We
demonstrate and discuss in Sect. 3.2 an example of atmospheric
retrieval using NPE, and then validate the statistical quality of
the posterior estimation in Sect. 3.3. Finally, in Sect. 3.4, we
report and compare computational times against the MultiNest
algorithm for nested sampling. The inference pipeline is summa-
rized in Fig. 1.

3.1. Setup

As a starting point to atmospheric retrieval with neural posterior
estimation, we first defined in Table 1 a 16-dimensional mul-
tivariate uniform prior distribution, with physically motivated
ranges for each parameter θ. This prior distribution is the same
as the one used by Mollière et al. (2020). Our training data set
is composed of 12 million parameters-spectrum pairs (θ, f (θ)).
It is created by drawing parameters θ ∼ p(θ) from the prior and
passing them through the simulator as shown in Fig. 1. We split
this dataset into 90 %, 9 %, and 1 % for training, validation, and
testing respectively.

We implemented the posterior estimator pϕ(θ|x) as a neu-
ral autoregressive flow (Huang et al. 2018) composed of three
transformations. Each transformation was parameterized by a
multilayer perceptron (MLP) with five hidden layers of size 512
and ELU activation functions (Clevert et al. 2015). A second
network, called the embedding, was used to compress the 379-
dimensional spectrum x into a vector of 64 features, which was
then used to condition the flow with respect to x. The rationale
behind this compression is that it forces the posterior estimator to
extract informative features from the spectra instead of memoriz-
ing the training data. The embedding network was implemented
as a ResidualMLP (or ResMLP), composed of 10 residual blocks
(He et al. 2016) of decreasing size (two times 512, three times
256 and five times 128) and also uses ELU activation functions.
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Prior
p(θ) θ

Simulator
p(x|θ) x

ϕ

pϕ(θ|x)

t1 ◦ t2 ◦ t3

Training
xobs

Inference

Fig. 1. Inference pipeline using amortized neural posterior estimation.
The joint simulation model p(x, θ) = p(θ)p(x|θ) is used to generate a
training set {(θ, x)} of model parameters θ and exoplanet spectra obser-
vations x. A conditional normalizing flow pϕ(θ|x) composed of an
embedding network and three invertible transformations ti is trained to
estimate the posterior density p(θ|x). Once trained, sampling from the
posterior estimator is as fast as a forward pass through the normalizing
flow. Inference can be repeated for many observations without having to
regenerate data nor retrain the normalizing flow.

Table 1. Prior distribution over the model parameters.

Parameter Prior Parameter Prior
T1 U(0,T2) log X̃Fe

(b) U(−2.3, 1)
T2 U(0,T3) log X̃MgSiO3

(b) U(−2.3, 1)
T3 U(0,Tconnect) (a) fsed U(0, 10)

log δ Pphot ∼ U(10−3, 102) (c) log Kzz U(5, 13)
α U(1, 2) σg U(1.05, 3)
T0 U(300, 2300) K RP U(0.9, 2)

C/O U(0.1, 1.6) log g U(2, 5.5)
Fe/H U(−1.5, 1.5) log Pquench U(−6, 3)

Notes. (a)Tconnect is the uppermost temperature of the photospheric layer
that petitRADTRANS calculates by setting the optical depth τ = 0.1.
(b)Here X̃i = Xi

0/X
i
eq, where Xeq is defined as the mass fraction predicted

for the cloud species when assuming equilibrium condensation at the
cloud base location. (c)Pphot is defined as the pressure where the optical
depth τ = 1. The parameter δ is calculated accordingly.

Before training, random noise realizations were added on-the-
fly to the spectra to obtain observations x = f (θ) + ϵ. Following
Eq. (3), the flow and embedding networks were trained jointly
to minimize the expected negative posterior log-density over the
training set. The optimization was carried out through a variant
of stochastic gradient descent, namely AdamW (Loshchilov &
Hutter 2017). We used an initial learning rate of 10−3 that was
halved every time the average loss over the validation set did not
improve for the last 32 epochs, until it reached 10−6 to improve
training without overfitting (Zhang et al. 2021). We also used a
high weight decay of 10−2. We trained for a total of 1024 epochs
during which 1024 random batches of 2048 pairs (θ, f (θ)) were
taken from the training set.

The architectural hyper-parameters were adjusted on valida-
tion data. We also explored a neural spline flow Durkan et al.
(2020) implementation of the posterior estimator, but in the end
implemented a neural autoregressive flow since it gave a lower
validation loss. We performed extensive hyper-parameter tuning
on the flow and embedding network parameters. For the flow,
we explored different numbers of transforms and hidden layer
dimensions in the range of [3, 5] and [256, 512], respectively. For

Table 2. Parameter values θobs of the benchmark spectrum xobs.

Parameter Value Parameter Value
T1 330.6 K log X̃Fe −0.86
T2 484.7 K log X̃MgSiO3 −0.65
T3 687.6 K fsed 3

log δ −7.51 log Kzz 8.5
α 1.39 σg 2
T0 1063.6 K RP 1

C/O 0.55 log g 3.75
Fe/H 0 log Pquench −5

the embedding network, we tried different number of layers in
the ResMLP in the range of [10, 15]. We also explored different
activation functions like ReLU and ELU for both networks. We
explored different values for the initial learning rate and the min-
imum learning rate in the ranges of [10−5, 10−3] and [10−6, 10−5],
respectively. We analyzed the impact of different schedulers like
ReduceLROnPlateau and CosineAnnealingLR, available in
PyTorch, with patience rates between [8, 32]. We tried batch
sizes between [28, 211] and the number of epochs between
[28, 210]. We tuned each hyper-parameter by randomly search-
ing over a grid within their range mentioned above, and studied
their impact over ∼80 runs in parallel. We selected those that led
to lower validation loss and/or more stable training. Amongst
all the parameters that we tuned, the parameter weight decay
between [0, 10−2] had the most significant impact on the train-
ing. We think this is because of the high variance of the input
dataset, where some spectra are six orders of magnitude brighter
than the rest. This leads to the skewing of the weights to very
high values, which is compensated by weight decay to improve
training performance. For more details, we refer to the source
code of the experiments1.

3.2. Benchmark retrieval

As a demonstration of atmospheric retrieval with NPE, we
present inference results for a synthetic exoplanet spectrum
xobs generated with the parameter values θobs given in Table 2,
similarly to the benchmark retrieval of Mollière et al. (2020).
The synthetic spectrum spans a wavelength range from 0.95
to 2.45 µm with a continuous wavelength spacing of λ/∆λ =
400. As in Mollière et al. (2020), we assumed a signal-to-noise
ratio of 10 per spectral bin, leading to a standard deviation
σ = 0.1257 × 10−17 W m−2

µm−1 for the Gaussian noise. The
synthetic spectrum used for our retrieval tests is shown in Fig. 1.

Retrieval results are summarized in Fig. 2. The corner plot
shows 1d and 2d marginal posterior distributions obtained for the
benchmark spectrum xobs. The marginal posterior distributions
were approximated by sampling sufficiently many times the joint
posterior distribution from the normalizing flow, which takes
only a few seconds to obtain a smooth corner plot. We observe
that the bulk of the marginal posterior distributions (in blue) is
centered around the parameter values θobs (in black) used to gen-
erate the spectrum xobs. The figure also illustrates the spread in
the posterior P–T profiles with respect to the synthetic observa-
tion spectrum. More specifically, we computed posterior P − T
profiles for θ ∼ pϕ(θ|xobs), and show their 68.3 %, 95.5 % and
99.7 % credible regions. We see that the P− T profile for θobs (in
black) is constrained mostly within the first credible region of the

1 https://github.com/MalAstronomy/sbi-ear
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Fig. 2. Benchmark retrieval using neural posterior estimation. The corner plot shows 1d and 2d marginal posterior distributions obtained for the
benchmark spectrum xobs for NPE (in blue) and for nested sampling (in orange). We observe that the nominal parameter values θobs (in black) are
well identified. The top right figure illustrates the posterior distribution of the P–T profiles.

posterior. These results lead us to believe that the NPE posterior
approximation produces coherent posterior distributions.

3.3. Validation

In Fig. 2, we compare the NPE posteriors with those obtained
using MultiNest (Feroz & Hobson 2008; Feroz et al. 2009,
2019; Buchner et al. 2014) for the same noisy synthetic obser-
vation, in orange. While the results obtained with NPE appear
to be coherent with respect to the nominal parameter values θobs
and the posterior P − T profiles, we see that the approximate
marginal posterior distributions computed with MultiNest,
using a sampling efficiency of 0.8 (recommended for parameter

estimation) with 4000 live points, are slightly less dispersed than
for NPE. On performing several retrievals with different noise
realizations (not shown here), it is seen that, each time, the peaks
of the individual parameter posterior distributions shift in a sim-
ilar way in both retrieval algorithms. This can be seen here in the
parameters C/O and Fe/H, similarly shifted slightly to the left.
This suggests that these shifts are directly related to the particu-
lar noise realization, and that MultiNest and NPE behave in a
similar way in presence of noise.

The difference in the posterior widths for the two algo-
rithms motivates a thorough investigation of the computa-
tional faithfulness of the NPE posterior approximations using
inference diagnostics, including posterior predictive checks and
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Fig. 3. Top: posterior predictive distribution p( f (θ)|xobs) of noiseless
spectra (without the instrumental noise disturbance ϵ) for the 99.7%,
95% and 68.7% quartiles (hues of blue), overlaid on top of the noiseless
observed spectrum f (θobs), (black line). Bottom: residuals of the pos-
terior predictive samples, normalized by the standard deviation of the
noise distribution for each spectral channel.

coverage. We took advantage of the quasi-instantaneous infer-
ence of NPE to perform these checks. We first performed a
quantitative examination of the posterior predictive distribution
pϕ( f (θ)|xobs) for spectra without instrumental noise disturbance,
which we obtained by sampling parameters from the poste-
rior, θ ∼ pϕ(θ|xobs), and then computed their spectra f (θ) with
petitRADTRANS. Figure 3 shows the posterior predictive dis-
tribution p( f (θ)|xobs) for various quartiles against the noiseless
version of the observed spectrum f (θobs). We observe that (i)
the posterior predictive distribution is well constrained, with the
68% quartile distribution mostly within the 1σ noise limit as
expected, and (ii) that f (θobs) is relatively well centered inside
the 68% quartile along all bins. Had the posterior distribution
pϕ(θ|xobs) been too wide, we would have observed a much larger
spread. Had the bulk of the posterior density been at the wrong
place, we would not have observed f (θobs) to be well inside the
distribution. These reassuring diagnostics are a first indication
of the good quality of the inference results obtained with NPE.
In particular, they demonstrate that the cloud parameter dis-
tributions derived by NPE produce spectra consistent with the
observed spectrum. In Fig. 4, we further demonstrate that the
parameter values sampled from the somewhat wider NPE cloud
posteriors are actually all leading to cloudy solutions, in good
agreement with the synthetic input observation. In this figure,
we sampled parameters from the (cloudy) approximate posterior,
but then artificially turned off the clouds, by setting the log of
the cloud mass fraction scaling factors XFe and XMgSiO3 to −10,
to assess their impact on the spectral shape. We see that these
cloudless spectra look significantly different from the cloudy
ones shown in Fig. 3. This implies that the posterior predictive
distribution samples in Fig. 3 are indeed affected by clouds.
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Fig. 4. Cloudless realizations of the posterior predictive distribution
p( fcloudless(θ)|xobs) overlaid on top of f (θobs), where fcloudless artificially
sets the cloud scaling factors log XFe and log XMgSiO3 to a very small
value of −10.

Following Hermans et al. (2020), we further evaluate the
global computational faithfulness of the NPE posterior approxi-
mations in terms of expected coverage. We define the expected
coverage probability of the 1 − α highest posterior density
regions derived from the posterior pϕ(θ|x) as

Ep(θ,x)

[
1

(
θ ∈ Θpϕ(θ|x)(1 − α)

)]
, (5)

where 1(·) is the indicator function, and where the function
Θpϕ(θ|x)(1−α) yields the 1−α highest posterior density region of
pϕ(θ|x). This diagnostic probes the consistency of the posterior
estimator pϕ(θ|x) and can be used to assess whether the approxi-
mate posterior distributions are overdispersed or underdispersed
on average. It is estimated by repeatedly sampling (θ, x) from the
prior and the simulation models, and then running NPE retrievals
on each x. If the posteriors are well calibrated, then the param-
eter values θ that were used to generate the spectra x should be
contained in the 1 − α highest posterior density regions of the
approximate posteriors pϕ(θ|x) exactly (1 − α)% of the time. If
the coverage probability is smaller than the credibility level 1−α,
then this indicates that the 1−α highest posterior density regions
are smaller than they should be, which is the sign of overcon-
fident and usually unreliable posterior approximations. On the
other hand, if the coverage probability is larger than the credi-
bility level 1 − α, then this indicates that the highest posterior
density regions are wider than they should be. In this case, the
posterior approximations are said to be conservative. We argue
that posterior approximations should rather be conservative to
guarantee reliable and meaningful inferences, even when the
approximations are not faithful. Indeed, wrongly excluding plau-
sible parameter values of exoplanet spectra could lead to wrong
conclusions about the actual nature of the exoplanet, while fail-
ing to exclude actually implausible parameter values would only
result in a loss of statistical power. Figure 5 summarizes the
expected coverage of pϕ(θ|x) for credibility levels from 0 to 1.
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Fig. 5. Coverage plot assessing the computational faithfulness of pϕ(θ|x)
in terms of expected coverage. The coverage probability is close to the
credibility level 1−α, which indicates that the posterior approximations
produced by NPE are neither significantly overdispersed (the coverage
curve would otherwise be above the diagonal) nor significantly under-
dispersed (the coverage curve would be below the diagonal).

The coverage curve closely fits the diagonal, which indicates that
the posterior distributions produced by NPE are well calibrated –
even though we note a trend for the posteriors to be very slightly
underdispersed.

Unfortunately, running the same coverage diagnostic for a
sampling algorithm such as MCMC or nested sampling is not
possible within a reasonable computation time, since it requires
the repeated construction of posterior distributions over many
distinct random realizations x in order to approximate the expec-
tation in Eq. (5). For this reason, we cannot conclude whether
MultiNest is computationally faithful in terms of expected
coverage. However, given that the approximate posterior distri-
bution produced by MultiNest in Fig. 2 is slightly narrower
than the NPE posterior distribution, it suggests that MultiNest
is slightly more underdispersed than NPE. This conclusion is
in line with the analysis of MultiNest posterior distributions
in Ardévol Martínez et al. (2022), where 4000 retrievals were
performed on simulated observations using CNNs and Multi-
Nest, which on comparison suggest that MultiNest tends to
underestimate the uncertainties of the parameter it retrieves.

3.4. Computational cost

One of the main advantages of neural posterior estimation is its
amortization of the inference procedure. Once trained, inference
does not require on-the-fly simulations and can be repeated sev-
eral times with different observations at very low computational
cost. We demonstrate the true potential of NPE by perform-
ing 1000 retrievals and comparing how long it would take for
MultiNest to produce comparable results. The 1000 observa-
tions were produced by randomly sampling parameters values θ
from the prior distribution and rendering them through the for-
ward simulation model to produce x ∼ p(x|θ). We then retrieved

their corresponding approximate posterior distributions pϕ(θ|x).
A single retrieval consists of sampling 30 740 posterior param-
eter vectors (as many as MultiNest yields) and rendering the
corner plot, took respectively 6 and 10 s in average. In total, 1000
retrievals would take approximately 4.5 h. With the upfront gen-
eration of the dataset (17 h on 1000 CPUs) and the training of
the neural network (13 h on a standard NVIDIA GTX 1080 Ti
GPU), we reach a total computing time of 34.5 h. By contrast,
each retrieval with MultiNest takes around 134 h on a cluster of
440 CPUs (totaling about 60 000 CPU hours) so that retrieving
atmospheric parameters on 1000 spectra would require an extrap-
olated time of 134 000 h (15 yr). In summary, NPE is around
4000 times faster for a thousand retrievals, and almost 30 000
times faster if we do not take the upfront generation and training
into account.

It is important to note that the computational speedup comes
with the overhead cost of building the training set (one per atmo-
spheric model) and training NPE on it. In our case, simulating a
single parameter-spectrum pair (θ, f (θ)) took around 5 s, which
results in a total of 17 000 CPU hours for the generation of the
12 millions pairs used in this study. The actual wall-clock time,
however, can be largely reduced by simulating the pairs in par-
allel on a large computing cluster, contrary to the on-the-fly and
sequential simulations required in MCMC or nested sampling
methods. In our case, the training set was generated in less than
17 h using a cluster of 1000 CPUs. Generating as many samples
may not be necessary in all cases, since sufficiently good perfor-
mance is likely to be possible from smaller training sets. Instead,
the main challenge with amortized inference will be to identify
a simulation model that is general enough to be applicable and
valid in many situations, so that the whole training process does
not need to be repeated for each individual case. This may be
possible for studies focusing on specific classes of planets, such
as hot Jupiters observed in transit, or self-luminous giant planets
observed with direct imaging. We also note that, when perform-
ing retrievals on a single object, a given training data set can
potentially be reused several times when exploring various levels
of wavelength binning or different noise models in the retrieval.
In this case, only the cost of the NPE training needs to be paid
several times.

4. Related work

The closest work to our study is the recent work of Yip et al.
(2022), who investigated variational inference and normalizing
flows for atmospheric exoplanet retrieval. In contrast to NPE,
their approach was nonamortized, and variational inference was
targeted at a single spectrum. For this reason, the expected
KL divergence trick we used in Eq. (3) to bypass the sam-
pling of the unknown posterior p(θ|x) is no longer applicable.
Instead, the parameters of the normalizing flow were trained
by maximizing a variational lower bound on the evidence p(x),
provided that the likelihood function associated with the simula-
tion model is both tractable and differentiable. In NPE, none of
these requirements are necessary – the inference algorithm can
be applied to any kind of simulation model, tractable or not, dif-
ferentiable or not. Nevertheless, the amortization in NPE comes
at the price of the upfront simulation of a large training set,
whereas direct variational inference as in Yip et al. (2022) only
requires a limited number of on-the-fly simulations. These on-
the-fly simulations, however, make inference significantly slower
than the quasi-instantaneous inference produced by an already-
trained normalizing flow. In particular, this prevents posterior
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diagnostics (as in Sect. 3.3), as they become computationally
very expensive.

Beyond exoplanet retrieval, NPE has been used increasingly
for inference problems found in astronomy. Close to exoplanet
atmospheric retrieval, Baso et al. (2022) and Ramos et al.
(2022) used NPE to determine the thermodynamic and mag-
netic properties of solar and stellar atmospheres as well as their
high-dimensional temperature maps. They similarly advocate for
amortized and rapid parameter estimation if complex models are
used to analyze the large amounts of data that the next gener-
ation of telescopes will produce. In gravitational wave science,
Dax et al. (2021) used NPE for fast and accurate inference of
the properties of binary black holes from gravitational waves.
The inference time was reduced from 1 day using MCMC to 20s
using NPE, making a strong case for inference in real-time. Simi-
larly, Zhang et al. (2020) and Hahn & Melchior (2022) used NPE
to perform inference on binary microlensing events. Complex
high-dimensional physical models result in time-consuming for-
ward simulations and complex likelihood surfaces that MCMC
methods find challenging to sample from. NPE offers a way to
infer from an upcoming catalog of binary events more accu-
rately and in real-time. In astroparticle physics, Mishra-Sharma
& Cranmer (2022) used NPE to improve the characterization
of the sources that contribute to the Fermi γ-ray Galactic Cen-
ter Excess (GCE), by directly sampling from high-dimensional
γ-ray maps instead of defining a simplified and tractable like-
lihood function that loses some information. Likewise, Bister
et al. (2022) studied the inference of cosmic-ray source proper-
ties from cosmic-ray observations on Earth. They concluded that
inference with NPE provides accurate, fast, and verifiable results
for a large phase space of the source parameters. Finally, as a
last example, Kodi Ramanah et al. (2020) used NPE to charac-
terize the dynamical mass of galaxy clusters directly from their
2d phase-space distributions.

For the same reasons of efficiency, scalability, and testa-
bility, simulation-based inference algorithms beyond NPE are
being increasingly used across astronomy and other fields of
science. Prominent algorithms include neural ratio estimation
(Hermans et al. 2020; Durkan et al. 2020), which builds a sur-
rogate of the likelihood-to-evidence ratio, and neural likelihood
estimation (Papamakarios & Murray 2016; Alsing et al. 2018;
Papamakarios et al. 2019), which learns a fast and tractable
surrogate of the likelihood.

5. Conclusion

In this paper, we implemented a simulation-based inference algo-
rithm called NPE to perform Bayesian retrievals of exoplanet
atmospheres. Unlike the commonly used nested sampling and
MCMC methods, which perform sequential sampling to con-
struct a joint posterior of all model parameters using an explicit
and tractable likelihood function, NPE relies on normalizing
flows to estimate the posterior in an amortized way, without
requiring an explicit or tractable likelihood. This offers several
benefits over standard algorithms.

First, NPE is time efficient due to amortization. The infer-
ence network needs to be trained only once, and the same
network can be used to perform quasi-instantaneous retrievals
over several observations without starting from scratch. We
demonstrated this by performing 1000 retrievals with synthetic
observations constructed by sampling randomly from the prior.
This procedure took 34.5 h in total, leading to a computational
speed up of 4000 over MultiNest. The initial overhead cost of

simulations was around 17 h, which can be easily compensated
as the number of observations increases. In the case where sev-
eral simulation models f need to be tested for the retrieval on a
given observation, NPE still provides a speed up of over a factor
four (134/30).

Second, NPE is scalable. Since the inference network is
trained on the parameters of interest only, performance does not
deteriorate as quickly as sampling-based algorithms that must
navigate the full joint posterior over both the parameters of inter-
est and the nuisance parameters. This is especially important for
future simulation models that are likely to include a large number
of nuisance parameters.

Lastly, NPE is testable. Since the inference of many obser-
vations takes only seconds to perform, one can easily check
the validity of NPE by performing posterior predictive checks
and producing coverage plots, which is almost impossible to
achieve in the case of sequential algorithms. The results pre-
sented in this study confirm that NPE provides computationally
faithful posteriors, without any simplifying assumption on the
shape of the posterior, yet with a possible sign of being slightly
underdispersed. While such tests cannot be performed with
Multinest to provide a fair comparison, our mock retrievals
suggest that NPE may be less underdispersed and more faithful
than Multinest.

NPE’s computational speed up opens the possibility of effi-
ciently retrieving atmospheric parameters from large datasets
of exoplanet spectra. The speed up provided in the retrieval of
individual spectra also enables the exploration of several differ-
ent simulation models over limited observations in a reasonable
time. The prospect of subjecting these retrievals to evalua-
tion metrics such as posterior predictive checks and coverage
plots ensures a statistical rigour to the associated results. This
establishes NPE as a robust algorithm to perform time-efficient
retrievals in the future.
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Normalizing flows (Papamakarios et al. 2021) are invertible mappings transforming a simple probability distribution to a complex
one. The change in the probability density of a random variable u due to a invertible transformation g is given by the change of
variables theorem as

log p(v) = log p(u) − log
∣∣∣∣∣det
∂g(u)
∂u

∣∣∣∣∣ ,
where v = g(u), and the determinant accounts for the change in volume between the two distributions. Because the transformation
is invertible, the opposite direction u = t(v) where t = g−1 is also tractable. In this direction, the density “flows” from a complex
distribution to a Normal distribution, hence the name “normalizing flows” (NFs).

To increase the expressiveness of NFs, parametric transformations can be stacked up as v = gn ◦ gn−1 ◦ . . . ◦ g1(u), which results
in the probability density

log p(v) = log p(u) −
n∑

i=1

log
∣∣∣∣∣det
∂gi(ui−1)
∂ui−1

∣∣∣∣∣ ,
where ui = gi(ui−1) and u0 = u.

In this work, we similarly model the posterior density pϕ(θ|x) of the variable θ through a series of transformations of a Nor-
mal random variable u with probability density p(u), as illustrated in Fig. A.1. In the case of neural autoregressive flows, the
transformations are invertible neural networks conditioned to the observation x.

θtϕ(θ|x)

x

u gϕ(u|x)

x

ϕ
tn ◦ · · · ◦ t1

ϕ g1 ◦ · · · ◦ gn

p(u) pϕ(θ|x)

Fig. A.1: Transformation of a random variable z with probability density p(z) toward a variable θ with probability density pϕ(θ|x).
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