[en] [en] INTRODUCTION: Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats.
DESIGN: Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12μg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48μg/kg.d; KTZ 3-12-48mg/kg.d).
RESULTS: Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood.
CONCLUSION: nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.
Disciplines :
Endocrinology, metabolism & nutrition
Author, co-author :
Franssen, Delphine ; Université de Liège - ULiège > Département des sciences cliniques > Pédiatrie
Johansson, Hanna K L; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
Lopez-Rodriguez, David; Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
Lavergne, Arnaud ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA) > Génomique animale
Terwagne, Quentin ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pédiatrie
Boberg, Julie; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
Christiansen, Sofie; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
Svingen, Terje; National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
Parent, Anne-Simone ; Centre Hospitalier Universitaire de Liège - CHU > > Service de pédiatrie
Language :
English
Title :
Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats.
Parent A-S Franssen D Fudvoye J Gérard A Bourguignon J-P. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: Revision of human observations and mechanistic insight from rodents. Front Neuroendocrinol (2015) 38:12–36. doi: 10.1016/j.yfrne.2014.12.004
Skakkebæk NE Lindahl-Jacobsen R Levine H Andersson AM Jørgensen N Main KM et al. Environmental factors in declining human fertility. Nat Rev Endocrinol (2022) 18:139–57. doi: 10.1038/s41574-021-00598-8
Goy RW Bercovitch FB McBrair MC. Behavioral masculinization is independent of genital masculinization in prenatally androgenized female rhesus macaques. Hormones Behav (1988) 22(4):552–71. doi: 10.1016/0018-506X(88)90058-X
Herbosa-Encarnación C Kosut SS Foster DL Wood RI. Prenatal androgens time neuroendocrine puberty in the sheep: Effect of testosterone dose*. Endocrinology (1997) 138(3):1072–7. doi: 10.1210/endo.138.3.4993
Gore AC Chappell VA Fenton SE Flaws JA Nadal A Prins GS et al. EDC-2: The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocrine Rev (2015) 36(6):E1–E150. doi: 10.1210/er.2015-1010
Skakkebaek NE. Sperm counts, testicular cancers, and the environment. BMJ (2017) 359. doi: 10.1136/bmj.j4517
Johansson HKL Svingen T Fowler PA Vinggaard AM Boberg J. Environmental influences on ovarian dysgenesis-developmental windows sensitive to chemical exposures. Nat Rev Endocrinol (2017) 13:400–14. doi: 10.1038/nrendo.2017.36
Johansson HKL Damdimopoulou P van Duursen MBM Boberg J Franssen D de Cock M et al. Putative adverse outcome pathways for female reproductive disorders to improve testing and regulation of chemicals. Arch Toxicol (2020) 400–14. doi: 10.1007/s00204-020-02834-y
Lopez-Rodriguez D Franssen D Heger S Parent AS. Endocrine-disrupting chemicals and their effects on puberty. Best Pract Res: Clin Endocrinol Metab (2021) 35. doi: 10.1016/j.beem.2021.101579
Franssen D Svingen T Lopez Rodriguez D Van Duursen M Boberg J Parent AS. A putative adverse outcome pathway network for disrupted female pubertal onset to improve testing and regulation of endocrine disrupting chemicals. Neuroendocrinology (2022) 112(2):101–14. doi: 10.1159/000515478
Krstevska-Konstantinova M Charlier C Craen M Du Caju M Heinrichs C De Beaufort C et al. Sexual precocity after immigration from developing countries to Belgium: Evidence of previous exposure to organochlorine pesticides. Hum Reprod (2001) 16(5):1020–6. doi: 10.1093/humrep/16.5.1020
Ouyang F Perry MJ Venners SA Chen C Wang B Yang F et al. Serum DDT, age at menarche, and abnormal menstrual cycle length. Occup Environ Med (2005) 62(12):878–84. doi: 10.1136/oem.2005.020248
Den Hond E Dhooge W Bruckers L Schoeters G Nelen V van de Mieroop E et al. Internal exposure to pollutants and sexual maturation in Flemish adolescents. J exposure Sci Environ Epidemiol (2011) 21(3):224–33. doi: 10.1038/jes.2010.2
Hatch EE Troisi R Wise LA Hyer M Palmer JR Titus-Ernstoff L et al. Age at natural menopause in women exposed to diethylstilbestrol in utero. Am J Epidemiol (2006) 164(7):682–8. doi: 10.1093/aje/kwj257
Palmer JR Wise LA Hatch EE Troisi R Titus-Ernstoff L Strohsnitter W et al. Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev (2006) 15(8):1509–14. doi: 10.1158/1055-9965.EPI-06-0109
Palioura E Diamanti-Kandarakis E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev Endocrine Metab Disord (2015) 16:365–71. doi: 10.1007/s11154-016-9326-7
Zhang S Tan R Pan R Xiong J Tian Y Wu J et al. Association of perfluoroalkyl and polyfluoroalkyl substances with premature ovarian insufficiency in Chinese women. J Clin Endocrinol Metab (2018) 103(7):2543–51. doi: 10.1210/jc.2017-02783
Rasier G Parent A-S Gérard A Lebrethon M-C Bourguignon J-P. Early maturation of gonadotropin-releasing hormone secretion and sexual precocity after exposure of infant female rats to estradiol or dichlorodiphenyltrichloroethane. Biol Reprod (2007) 77(4):734–42. doi: 10.1095/biolreprod.106.059303
Franssen D Ioannou YS Alvarez-real A Gérard A Mueller JK Heger S et al. Pubertal timing after neonatal diethylstilbestrol exposure in female rats: Neuroendocrine vs peripheral effects and additive role of prenatal food restriction. Reprod Toxicol (2014) 44(0):63–72. doi: 10.1016/j.reprotox.2013.10.006
Franssen D Gérard A Hennuy B Donneau AF Bourguignon JP Parent AS. Delayed neuroendocrine sexual maturation in female rats after a very low dose of bisphenol a through altered gabaergic neurotransmission and opposing effects of a high dose. Endocrinology (2016) 157(5):1740–50. doi: 10.1210/en.2015-1937
Johansson HKL Christiansen S Draskau MK Svingen T Boberg J. Classical toxicity endpoints in female rats are insensitive to the human endocrine disruptors diethylstilbestrol and ketoconazole. Reprod Toxicol (2021) 101:9–17. doi: 10.1016/j.reprotox.2021.01.003
Castillo LY Ríos-Carrillo J González-Orozco JC Camacho-Arroyo I Morin JP Zepeda RC et al. Juvenile exposure to BPA alters the estrous cycle and differentially increases anxiety-like behavior and brain gene expression in adult Male and female rats. Toxics (2022) 10(9):513. doi: 10.3390/toxics10090513
Newbold RR. Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol (2004) 199(2):142–50. doi: 10.1016/j.taap.2003.11.033
Karavan JR Pepling ME. Effects of estrogenic compounds on neonatal oocyte development. Reprod Toxicol (2012) 34(1):51–6. doi: 10.1016/j.reprotox.2012.02.005
Lopez-Rodriguez D Franssen D Sevrin E Gerard A Balsat C Blacher S et al. Persistent vs transient alteration of folliculogenesis and estrous cycle after neonatal vs adult exposure to bisphenol a. Endocrinology (2019) 160(11):2558–72. doi: 10.1210/en.2019-00505
Heckman WR Kane BR Pakyz RE Cosentino MJ. The effect of ketoconazole on endocrine and reproductive parameters in Male mice and rats. J Androl (1992) 13(3):191–8. doi: 10.1002/j.1939-4640.1992.tb00298.x
Skakkebaek NE Rajpert-De Meyts E Buck Louis GM Toppari J Andersson AM Eisenberg ML et al. Male Reproductive disorders and fertility trends: Influences of environment and genetic susceptibility. Physiol Rev (2015) 96(1):55–97. doi: 10.1152/physrev.00017.2015
Jorgensen A Svingen T Miles H Chetty T Stukenborg JB Mitchell RT. Environmental impacts on Male reproductive development: Lessons from experimental models. Hormone Res Paediatrics (2021), 303–19. doi: 10.1159/000519964
Mesquita I Lorigo M Cairrao E. Update about the disrupting-effects of phthalates on the human reproductive system. Mol Reprod Dev (2021) 88(10):650–72. doi: 10.1002/mrd.23541
Basso CG de Araújo-Ramos AT Martino-Andrade AJ. Exposure to phthalates and female reproductive health: A literature review. Reprod Toxicol (2022) 109:61–79. doi: 10.1016/j.reprotox.2022.02.006
Pinson A Franssen D Gérard A Parent A-S Bourguignon J-P. Neuroendocrine disruption without direct endocrine mode of action: Polychloro-biphenyls (PCBs) and bisphenol a (BPA) as case studies. Comptes rendus biologies (2017) 340(9–10):432–8. doi: 10.1016/j.crvi.2017.07.006
Heger S Mastronardi C Dissen GA Lomniczi A Cabrera R Roth CL et al. Enhanced at puberty 1 (EAP1) is a new transcriptional regulator of the female neuroendocrine reproductive axis. J Clin Invest (2007) 117(8):2145–54. doi: 10.1172/JCI31752
Lomniczi A Wright H Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol (2015) 36:90–107. doi: 10.1016/j.yfrne.2014.08.003
Aylwin CF Vigh-Conrad K Lomniczi A. The emerging role of chromatin remodeling factors in female pubertal development. Neuroendocrinology (2019) 109(3):208–17. doi: 10.1159/000497745
Lopez-Rodriguez D Franssen D Bakker J Lomniczi A Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol (2021) 17(2):83–96. doi: 10.1038/s41574-020-00436-3
Mason JI Carr BR Murry BA. Imidazole antimycotics: selective inhibitors of steroid aromatization and progesterone hydroxylation. Steroids (1987) 50(1–3):179–89. doi: 10.1016/0039-128X(83)90070-3
Oates JA Wood AJJ Sonino N. The use of ketoconazole as an inhibitor of steroid production. New Engl J Med (1987) 317(13):812–8. doi: 10.1056/NEJM198709243171307
Kjærstad MB Taxvig C Nellemann C Vinggaard AM Andersen HR. Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reprod Toxicol (2010) 30(4):573–82. doi: 10.1016/j.reprotox.2010.07.009
Munkboel CH Rasmussen TB Elgaard C Olesen MLK Kretschmann AC Styrishave B. The classic azole antifungal drugs are highly potent endocrine disruptors in vitro inhibiting steroidogenic CYP enzymes at concentrations lower than therapeutic cmax. Toxicology (2019) 425:152247. doi: 10.1016/j.tox.2019.152247
Folmar LC Hemmer MJ Denslow ND Kroll K Chen J Cheek A et al. A comparison of the estrogenic potencies of estradiol, ethynylestradiol, diethylstilbestrol, nonylphenol and methoxychlor in vivo and in vitro. Aquat Toxicol (2002) 60(1–2):101–10. doi: 10.1016/S0166-445X(01)00276-4
Han DH Denison MS Tachibana H Yamada K. Relationship between estrogen receptor-binding and estrogenic activities of environmental estrogens and suppression by flavonoids. Biosci biotechnol Biochem (2002) 66(7):1479–87. doi: 10.1271/BBB.66.1479
Brion F Le Page Y Piccini B Cardoso O Tong SK Chung BC et al. Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PloS One (2012) 7(5):e36069. doi: 10.1371/JOURNAL.PONE.0036069
Korach KS McLachlan JA. The role of the estrogen receptor in diethylstilbestrol toxicity. Arch Toxicol Supplement (1985) 8:33–42. doi: 10.1007/978-3-642-69928-3_4
Kuiper GG Lemmen JG Carlsson B Corton JC Safe SH van der Saag PT et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology (1998) 139(10):4252–63. doi: 10.1210/endo.139.10.6216
Blair RM Fang H Branham WS Hass BS Dial SL Moland CL et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicological Sci (2000) 54(1):138–53. doi: 10.1093/TOXSCI/54.1.138
Couse JF Dixon D Yates M Moore AB Ma L Maas R et al. Estrogen receptor-alpha knockout mice exhibit resistance to the developmental effects of neonatal diethylstilbestrol exposure on the female reproductive tract. Dev Biol (2001) 238(2):224–38. doi: 10.1006/DBIO.2001.0413
Bulayeva NN Watson CS. Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ Health perspectives (2004) 112(15):1481–7. doi: 10.1289/ehp.7175
Li X Zhang S Safe S. Activation of kinase pathways in MCF-7 cells by 17beta-estradiol and structurally diverse estrogenic compounds. J Steroid Biochem Mol Biol (2006) 98(2–3):122–32. doi: 10.1016/J.JSBMB.2005.08.018
van Duursen MBM Boberg J Christiansen S Connolly L Damdimopoulou P Filis P et al. Safeguarding female reproductive health against endocrine disrupting chemicals–the FREIA project. Int J Mol Sci (2020) 21(9):3215. doi: 10.3390/ijms21093215
Bourguignon JP Franchimont P. Puberty-related increase in LHRH release from rat hypothalamus in vitro. Endocrinology (1984) 114(5):1941–3. doi: 10.1210/endo-114-5-1941
Matagne V Rasier G Lebrethon M-CC Gérard A Bourguignon J-PP. Estradiol stimulation of pulsatile gonadotropin-releasing hormone secretion in vitro: correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Endocrinology (2004) 145(6):2775–83. doi: 10.1210/en.2003-1259
Bourguignon JP Gérard A Franchimont P. Direct activation of gonadotropin-releasing hormone secretion through different receptors to neuroexcitatory amino acids. Neuroendocrinology (1989) 49(4):402–8. doi: 10.1159/000125145
Love MI Huber W Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15(12):550. doi: 10.1186/s13059-014-0550-8
Thomas S Bonchev D. A survey of current software for network analysis in molecular biology. Hum Genomics (2010) 4(5):353–60. doi: 10.1186/1479-7364-4-5-353
Krämer A Green J Pollard J Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics (2014) 30(4):523–30. doi: 10.1093/bioinformatics/btt703
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res (2001) 29(9):45. doi: 10.1093/nar/29.9.e45
Bourguignon J-PP Gerard A Alvarez Gonzalez ML Franchimont P Gonzalez MA Franchimont P. Neuroendocrine mechanism of onset of puberty. sequential reduction in activity of inhibitory and facilitatory n-methyl-p-aspartate receptors. J Clin Invest (1992) 90(5):1736–44. doi: 10.1172/JCI116047
Howard SR. The genetic basis of delayed puberty. Front Endocrinol (2019) 40(2):669–710. doi: 10.3389/fendo.2019.00423
Young J Xu C Papadakis GE Acierno JS Maione L Hietamäki J et al. Clinical management of congenital hypogonadotropic hypogonadism. Endocrine Rev (2019), 669–710. doi: 10.1210/er.2018-00116
Howard SR Guasti L Ruiz‐Babot G Mancini A David A Storr HL et al. IGSF10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty. EMBO Mol Med (2016) 8(6):626–42. doi: 10.15252/EMMM.201606250
Abreu AP Toro CA Song YB Navarro VM Bosch MA Eren A et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest (2020) 140(8):4486–500. doi: 10.1172/JCI136564
Motoike T Skach AG Godwin JK Sinton CM Yamazaki M Abe M et al. Transient expression of neuropeptide W in postnatal mouse hypothalamus - a putative regulator of energy homeostasis. Neuroscience (2015) 301:323–37. doi: 10.1016/j.neuroscience.2015.06.014
Toro CA Aylwin CF Lomniczi A. Hypothalamic epigenetics driving female puberty. J Neuroendocrinol (2018) 30(7):e12589. doi: 10.1111/jne.12589
López-Rodríguez D Aylwin CF Delli V Sevrin E Campanile M Martin M et al. Multi- and transgenerational outcomes of an exposure to a mixture of endocrine-disrupting chemicals (EDCs) on puberty and maternal behavior in the female rat. Environ Health Perspect (2021) 129(8):87003. doi: 10.1289/EHP8795
Herbison AE. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol (2016) 12(8):452–66. doi: 10.1038/nrendo.2016.70
Goodman RL Herbison AE Lehman MN Navarro VM. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J Neuroendocrinol (2022) 34(5):e13094. doi: 10.1111/jne.13094
Parent AS Lebrethon MC Gerard A Vandersmissen E Bourguignon J-P. Leptin effects on pulsatile gonadotropin releasing hormone secretion from the adult rat hypothalamus and interaction with cocaine and amphetamine regulated transcript peptide and neuropeptide y. Regul Peptides (2000) 92:17–24. doi: 10.1016/S0167-0115(00)00144-0
Terasawa E. Mechanism of pulsatile GnRH release in primates: Unresolved questions. Mol Cell Endocrinol (2019) 498:110578. doi: 10.1016/j.mce.2019.110578
Liu X Porteous R Herbison AE. Robust GABAergic regulation of the GnRH neuron distal dendron. Endocrinology (2022) 164(1):bqac194. doi: 10.1210/endocr/bqac194
Linscott ML Chung WCJ. Epigenomic control of gonadotrophin-releasing hormone neurone development and hypogonadotrophic hypogonadism. J Neuroendocrinol (2020) 32(6):e12860. doi: 10.1111/JNE.12860
Terasawa E. The mechanism underlying the pubertal increase in pulsatile GnRH release in primates. J Neuroendocrinol (2022) 34(5):e13119. doi: 10.1111/jne.13119
Kenealy BP Keen KL Kapoor A Terasawa E. Neuroestradiol in the stalk median eminence of female rhesus macaques decreases in association with puberty onset. Endocrinology (2016) 157(1):70–6. doi: 10.1210/en.2015-1770
Ghosh A Ginty DD Bading H Greenberg ME. Calcium regulation of gene expression in neuronal cells. J Neurobiol (1994) 25(3):294–303. doi: 10.1002/neu.480250309
Altarejos JY Montminy M. CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol (2011) 12:141–51. doi: 10.1038/nrm3072
Kwakowsky A Herbison AE Ábrahám IM. The role of cAMP response element-binding protein in estrogen negative feedback control of gonadotropin-releasing hormone neurons. J Neurosci (2012) 32(33):11309–17. doi: 10.1523/JNEUROSCI.1333-12.2012
Li X Jiang L Cheng L Chen H. Dibutyl phthalate-induced neurotoxicity in the brain of immature and mature rat offspring. Brain Dev (2014) 36(8):653–60. doi: 10.1016/j.braindev.2013.09.002
Min A Liu F Yang X Chen M. Benzyl butyl phthalate exposure impairs learning and memory and attenuates neurotransmission and CREB phosphorylation in mice. Food Chem Toxicol (2014) 71:81–9. doi: 10.1016/j.fct.2014.05.021
Qiu F Zhou Y Deng Y Yi J Gong M Liu N et al. Knockdown of TNFAIP1 prevents di-(2-ethylhexyl) phthalate-induced neurotoxicity by activating CREB pathway. Chemosphere (2020) 241:125114. doi: 10.1016/j.chemosphere.2019.125114
Plummer SM Dan D Quinney J Hallmark N Phillips RD Millar M et al. Identification of transcription factors and coactivators affected by dibutylphthalate interactions in fetal rat testes. Toxicological Sci (2013) 132(2):443–57. doi: 10.1093/toxsci/kft016
Dees WL Hiney JK Srivastava VK. IGF-1 influences gonadotropin-releasing hormone regulation of puberty. Neuroendocrinology (2021) 111(12):1151–63. doi: 10.1159/000514217
Dees WL Hiney JK Srivastava VK. Regulation of prepubertal dynorphin secretion in the medial basal hypothalamus of the female rat. J Neuroendocrinol (2019) 31(12):e12810. doi: 10.1111/jne.12810
Roepke TA Yang JA Yasrebi A Mamounis KJ Oruc E Zama AM et al. Regulation of arcuate genes by developmental exposures to endocrine-disrupting compounds in female rats. Reprod Toxicol (Elmsford N.Y.) (2016) 62:18–26. doi: 10.1016/j.reprotox.2016.04.014
Shao P Wang Y Zhang M Wen X Zhang J Xu Z et al. The interference of DEHP in precocious puberty of females mediated by the hypothalamic IGF-1/PI3K/Akt/mTOR signaling pathway. Ecotoxicol Environ Saf (2019) 181:362–9. doi: 10.1016/j.ecoenv.2019.06.017
Parent A-S Lebrethon M-C Gérard A Bourguignon J-P. Factors accounting for perinatal occurrence of pulsatile gonadotropin-releasing hormone secretion in vitro in rats. Biol Reprod (2005) 72(1):143–9. doi: 10.1095/biolreprod.104.033167
Parent AS Rasier G Matagne V Lomniczi A Lebrethon MC Gérard A. Oxytocin facilitates female sexual maturation through a glia to neuron signaling pathway. Endocrinology (2008) 149(3):1358–65. doi: 10.1210/en.2007
Salehi MS Khazali H Mahmoudi F Janahmadi M. Oxytocin intranasal administration affects neural networks upstream of GNRH neurons. J Mol Neurosci (2017) 62(3–4):356–62. doi: 10.1007/s12031-017-0943-8
Mennigen JA Ramachandran D Shaw K Chaube R Joy KP Trudeau VL. Reproductive roles of the vasopressin/oxytocin neuropeptide family in teleost fishes. Front Endocrinol (2022) 13:1005863. doi: 10.3389/fendo.2022.1005863
Evans JJ Reid RA Wakeman SA Croft LB Benny PS. Evidence that oxytocin is a physiological component of LH regulation in non-pregnant women. Hum Reprod (2003) 18(7):1428–31. doi: 10.1093/humrep/deg291
Escher P Wahli W. Peroxisome proliferator-activated receptors: Insight into multiple cellular functions. Mutat Res - Fundam Mol Mech Mutagenesis (2000) 448(2):121–38. doi: 10.1016/S0027-5107(99)00231-6
Mouihate A Boissé L Pittman QJ. A novel antipyretic action of 15-Deoxy-Δ 12,14-prostaglandin J2 in the rat brain. J Neurosci (2004) 24(6):1312–8. doi: 10.1523/JNEUROSCI.3145-03.2004
Sarruf DA Yu F Nguyen HT Williams DL Printz RL Niswender KD et al. Expression of peroxisome proliferator-activated receptor-γ in key neuronal subsets regulating glucose metabolism and energy homeostasis. Endocrinology (2009) 150(2):707–12. doi: 10.1210/en.2008-0899
Manfredi-Lozano M Roa J Tena-Sempere M. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol (2018) 48:37–49. doi: 10.1016/j.yfrne.2017.07.008
Desvergne B Feige JN Casals-Casas C. PPAR-mediated activity of phthalates: A link to the obesity epidemic? Mol Cell Endocrinol Mol Cell Endocrinol (2009) 304(1-2):43–8. doi: 10.1016/j.mce.2009.02.017
Nappi F Barrea L Di Somma C Savanelli MC Muscogiuri G Orio F et al. Endocrine aspects of environmental “obesogen” pollutants. Int J Environ Res Public Health (2016) 13(8):765. doi: 10.3390/ijerph13080765
Lovekamp-Swan T Jetten AM Davis BJ. Dual activation of PPARα and PPARγ by mono-(2-ethylhexyl) phthalate in rat ovarian granulosa cells. Mol Cell Endocrinol (2003) 201(1–2):133–41. doi: 10.1016/S0303-7207(02)00423-9
Ding N Harlow SD Randolph JF Loch-Caruso R Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update (2020) 26(5):724–52. doi: 10.1093/humupd/dmaa018
Colciago A Casati L Mornati O Vergoni A V Santagostino A Celotti F et al. Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat part 2: Effects on reproductive parameters, on sex behavior, on memory retention and on hypothalamic expression of aromatase and 5alpha-reductases in the offs. Toxicol Appl Pharmacol (2009) 239(1):46–54. doi: 10.1016/j.taap.2009.04.023
Kanaya M Tsuda MC Sagoshi S Nagata K Morimoto C Thu CKT et al. Regional difference in sex steroid action on formation of morphological sex differences in the anteroventral periventricular nucleus and principal nucleus of the bed nucleus of the stria terminalis. PloS One (2014) 9(11):e112616. doi: 10.1371/journal.pone.0112616
Kanaya M Morishita M Tsukahara S. Temporal expression patterns of genes related to sex steroid action in sexually dimorphic nuclei during puberty. Front Endocrinol (2018) 9:213. doi: 10.3389/fendo.2018.00213
Wartenberg P et al. Sexually dimorphic neurosteroid synthesis regulates neuronal activity in the murine brain. J Neurosci (2021) 41(44):9177–91. doi: 10.1523/JNEUROSCI.0885-21.2021
Stanić D Dubois S Chua HK Tonge B Rinehart N Horne MK et al. Characterization of aromatase expression in the adult Male and female mouse brain. i. coexistence with oestrogen receptors α and β, and androgen receptors. PloS One (2014) 9(3):e90451. doi: 10.1371/journal.pone.0090451
McCarthy MM Arnold AP Ball GF Blaustein JD de Vries GJ. Sex differences in the brain: The not so inconvenient truth. J Neurosci (2012) 32(7):2241–7. doi: 10.1523/JNEUROSCI.5372-11.2012
Loose DS Kan PB Hirst MA Marcus RA Feldman D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J Clin Invest (1983) 71(5):1495–9. doi: 10.1172/JCI110903
Medda F et al. Short term treatment with ketoconazole: effects on gonadal and adrenal steroidogenesis in women(1987) (Accessed 14 February 2023).
Kugathas I Johansson HKL Chan Sock Peng E Toupin M Evrard B Darde TA et al. Transcriptional profiling of the developing rat ovary following intrauterine exposure to the endocrine disruptors diethylstilbestrol and ketoconazole. Arch Toxicol (2023) 97(3):849–63. doi: 10.1007/S00204-023-03442-2
Huang T Zhao Y He J Cheng H Martyniuk CJ. Endocrine disruption by azole fungicides in fish: A review of the evidence. Sci total Environ (2022) 822:153412. doi: 10.1016/J.SCITOTENV.2022.153412