Communication poster (Colloques et congrès scientifiques)
Machine Learning for wall modeling in LES of separating flows
Boxho, Margaux; Thomas, Toulorge; Michel, Rasquin et al.
2022HiFiLeD: 3rd High-Fidelity Industrial LES/DNS Symposium
 

Documents


Texte intégral
Boxho_HiFiLeD_Presentation_2022.pdf
Postprint Auteur (8.18 MB)
Télécharger
Annexes
Boxho_HiFiLeD_abstract_2022.pdf
(314.32 kB)
Télécharger

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Turbulence; High-fidelity; wmLES; Data-driven model; Neural networks; ML; Discontinuous Galerking Method
Résumé :
[en] Large Eddy Simulations (LES) are of increasing interest for turbomachinery design since they provide a more reliable prediction of flow physics and component behavior than standard RANS simulations. However, they remain prohibitively expensive at high Reynolds numbers or realistic geometries. The cost of resolving the near-wall region has justified the development of wall-modeled LES (wmLES), which uses a wall model to account for the effect of the energetic near-wall eddies. The classical assumptions of algebraic wall models do not hold for more complex flow patterns that frequently occur in turbomachinery passages (i.e., misalignment, separation). This work focuses on the extension of wall models to the separation phenomenon. Among possibilities to solve the complex regression problem (i.e., predicting the wall-parallel components of the shear stress from instantaneous flow data and geometrical parameters), neural networks have been selected for their universal approximation capabilities. Since DNS and LES perform well on academic and several industrial configurations, they are used to produce databases to train various neural networks. In the present work, we investigate the possibility of using neural networks to improve wall-shear stress models for flows featuring severe pressure gradients and separation. The database is composed of three building-blocks flows: (1) a flow aligned turbulent boundary layer at equilibrium; (2) a turbulent boundary layer subjected to a moderate pressure gradient; and (3) a turbulent boundary layer that separates and reattaches from a curved wall. These building blocks are referred to as a channel flow at a friction Reynolds number of 950 and the two walls (i.e., the flat upper surface and the curved lower one) of the two-dimensional periodic hill at a bulk Reynolds number of $10{,}595$, respectively. This work is constructed around three main questions: which input points should be considered for the data-driven wall model, how should one normalize the in- and output data to obtain a unified and consistent database, and which neural networks are considered.
Disciplines :
Ingénierie aérospatiale
Auteur, co-auteur :
Boxho, Margaux ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Cenaero ; UCLouvain
Thomas, Toulorge;  Cenaero
Michel, Rasquin;  Cenaero
Grégory, Dergham;  Safran Tech > Digital Sciences & Technologies
Grégoire, Winckelmans;  Ecole Polytechnique de Louvain > Institute of Mechanics, Materials and Civil Engineering (IMMC) > Thermodynamics and fluid mechanics
Hillewaert, Koen  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Design of Turbomachines ; Cenaero
Langue du document :
Anglais
Titre :
Machine Learning for wall modeling in LES of separating flows
Date de publication/diffusion :
2022
Nom de la manifestation :
HiFiLeD: 3rd High-Fidelity Industrial LES/DNS Symposium
Organisateur de la manifestation :
ERCOFTAC
Lieu de la manifestation :
Bruxelle, Belgique
Date de la manifestation :
14-16 December 2022
Manifestation à portée :
International
Tags :
Tier-1 supercalculateur
Organisme subsidiant :
Safran - Safran Tech
Disponible sur ORBi :
depuis le 15 mai 2023

Statistiques


Nombre de vues
97 (dont 6 ULiège)
Nombre de téléchargements
83 (dont 1 ULiège)

Bibliographie


Publications similaires



Contacter ORBi