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Large Eddy Simulations (LES) are of increasing interest for turbomachinery design since
they provide a more reliable prediction of flow physics and component behavior than stan-
dard RANS simulations. However, they remain prohibitively expensive at high Reynolds
numbers or realistic geometries. The cost of resolving the near-wall region has justified the
development of wall-modeled LES (wmLES), which uses a wall model to account for the
effect of the energetic near-wall eddies. The classical assumptions of algebraic wall models
do not hold for more complex flow patterns that frequently occur in turbomachinery pas-
sages (i.e., misalignment, separation). This work focuses on the extension of wall models to
the separation phenomenon. Among possibilities to solve the complex regression problem
(i.e., predicting the wall-parallel components of the shear stress from instantaneous flow data
and geometrical parameters), neural networks have been selected for their universal approx-
imation capabilities. Since DNS and LES perform well on academic and several industrial
configurations, they are used to produce databases to train various neural networks. In the
present work, we investigate the possibility of using neural networks to improve wall-shear
stress models for flows featuring severe pressure gradients and separation. The database is
composed of three building-blocks flows: (1) a flow aligned turbulent boundary layer at equi-
librium; (2) a turbulent boundary layer subjected to a moderate pressure gradient; and (3) a
turbulent boundary layer that separates and reattaches from a curved wall. These building
blocks are referred to as a channel flow at a friction Reynolds number of 950 and the two
walls (i.e., the flat upper surface and the curved lower one) of the two-dimensional periodic
hill at a bulk Reynolds number of 10,595, respectively.

This work is constructed around three main questions: which input points should be consid-
ered for the data-driven wall model, how should one normalize the in- and output data to
obtain a unified and consistent database, and which neural networks are considered.
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Input stencil The wall model input is a mix between flow field and geometry data. For the
flow fields, the velocity and the pressure gradients are considered. A key piece of information
for the wall model is the wall-normal distance at which the flow fields are extracted, defined as
hwm. The curvature K of the wall is also added as it proved to improve the prediction of the
τw on the curved wall. The choice of stencil is based on an analysis of space-time correlations
between instantaneous flow fields and the two components of τw [Boxho et al., 2021]. This
work has shown that the input stencil has to be enlarged to account for up and downstream
data. Therefore, the relative positions have to be encoded as inputs.

Normalization The inputs described in the previous section need to be normalized to
train the neural network on a unified database. The inputs and outputs of the wall model
are summarized in Table 1. Recall that hwm is the wall-normal distance at which the fields
are measured and fed to the model. We also define u∥ =

√
(u2

ξ + u2
z), the norm of the

wall-parallel velocity. The normalization of hwm is based on the near wall scaling proposed
by [Duprat et al., 2011] combined with the work of [Zhou et al., 2021]. The near-wall scaling
compatible with separation uses yν,p = ν/uν,p with uν,p =

√
(u2

ν+u2
p) where uν =

√
(ν u∥/hwm)

and up = |(ν/ρ)∂ξp| 1/3. Regarding the velocity and the pressure gradient, the former is
normalized with uν,p, while the latter is an analogy to the classical Clauser parameter.

Field Normalized
Velocity u u⋆ = u/uν,p

Pressure Gradients ∇p (∇p)⋆ =
(
hwm/

(
ρu2

ν,p

))
∇p

Length scale hwm h⋆
wm = ln (hwm/yν,p)

Curvature K

Relative pos. δξ (δξ)∗ = δξ/h

Wall shear stress τw τ ⋆
w = τw/

(
1
2
ρ⟨u2

ν,p⟩ξ,z⟩
)

Table 1: Inputs and output of the data-driven wall model.

Neural Networks Since the stencil includes multiple locations, convolutional neural net-
works (CNNs) are preferred over multi-layer perceptrons [Indolia et al., 2018]. Indeed, the
translation-invariance (i.e., convolution) is encapsulated in the obtained model, which is a
desirable property for convection problems. The network hyperparameters were adjusted
to obtain the optimal receptive field. We call this model. The Mean Square Error (MSE)
loss is selected to train the model. It has been implemented in the code Argo-DG, de-
veloped at Cenaero. The a posteriori validation was conducted on the channel and the
two-dimensional periodic hill. The predictions on the channel are equivalent to an alge-
braic law of the wall (e.g., the Reichardt law of the wall). Going to the periodic hill,
the model underpredicts the recirculation bubble size. Such a problem was also observed
by [D. Zhou, M.P. Whitmore, K.P. Griffin and H. J. Bae, 2022]. They state that it may be
explained by a directional inconsistency of the velocity at the interface and the wall shear
stress. This inconsistency, in wall models, causes the velocity to go in the incorrect direction
and creates a positive feedback loop, leading to the misprediction of the bubble size. The
ongoing work is to correct our wall model based on this observation and to extend the a
posteriori validation to higher Reynolds numbers.
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