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Industrial context

RANS frequently fails
at off-design condi-

tions due to its inherent
modeling assumptions.

LES reduces the mod-
eling assumptions
but remains costly at

large Reynolds numbers.

Wall-models reduces
the computational cost
by modeling the near-
wall energetic scales.

Simulations of turbomachines to com-
pute the operating points of the engine.

Calibration of the wall models using
neural networks with wrLES on ba-
sic and academic test cases and blades.

In turbomachines, transitional flows
are frequently encountered, such
as laminar separation bubbles.

Increasing fidelity on sub-components (wrLES,DNS)

Feed lower-fidelity models on larger components (wmLES)
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Wall modeled LES with neural networks

X

Y

Z

X

Y

Z

u, ∇p

τw

= wall model = f (u,∇p, . . . ) =

u

∇p

hwm

K

δξ

τw,ξ

τw,z

Problem definition Finding a complex and
dynamic relation between instantaneous

fields, geometrical parameters, and the wall-
parallel components of the wall shear stress
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Outlines

[1] Generate databases
from basic, academic,
and blades test cases

[2] Normalize the
input/output pairs
to get a uniform

database for the training

[3] Train neural net-
works (CNN and MDN)
for the prediction of
the wall shear stress

[4] A priori validation
(i.e., mean, variance,

power density spectrum,
instantaneous field, ...)

[5] Implementation
of the data-driven wall

model in a high-order flow
solver (i.e., Argo-DG)

#include <torch/script.h>

[6] A posteriori validation
on the two-dimensional

periodic hill at Reb = 10,595
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Where is the data extracted?

X

Y

Z

τw

u, ∇p, hwm, . . .

The input size is based on the analysis of space-time correlations1

[1] Boxho, M. et al.: Analysis of space-time correlations to support the development of wall-modeled LES. Flow, Turbulence and Combustion, 2022.

1
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Normalization of the input/output pairs

The inputs are normalized as,

u⋆ =
u
uν,p

(∇p)⋆ =
hwm(
ρu2ν,p

)∇p h⋆wm = ln

(
hwm
yν,p

)
(δξ)∗ =

δξ

yν,p

uν,p =
√
u2ν + u2p

uν =

√
ν∥u∥∥
hwm

up =

∣∣∣∣νρ∥∇p∥∥
∣∣∣∣1/3

yν,p =
ν

uν,p

The outputs are normalized as,

τ ⋆
w =

τw
1
2ρ⟨u2ν,p⟩ξ,z
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Neural networks: Properties and architecture

Convolutional neural network (CNN) Mixture Density Network (MDN)

Prop.

Invariant to translation Produces a distribution as a linear
combination of Gaussian distribution

p(y |x) =
K∑

k=1

πkN (y ;µk , σ
2
k)

Archit.

Obj.
fun.

argmin
θ

∑
xi ,yi∈d

(yi − ŷi )
2

argmin
θ

∑
xi ,yi∈d

(yi − µ(xi ))
2

2σ(xi )
+log(σ(xi ))+C

The prediction
is obtained from
a sampling of
the generated
distribution.

HiFiLeD, 14-16th December 2022, Brussels, Belgium © 2023 Cenaero - All rights reserved 7

P
R
O
D
-F
-0
1
5
-0
2



PR
O
D
-F
-0
15
-0
2

Neural networks: Properties and architecture

Convolutional neural network (CNN) Mixture Density Network (MDN)

Prop.

Invariant to translation Produces a distribution as a linear
combination of Gaussian distribution

p(y |x) =
K∑

k=1

πkN (y ;µk , σ
2
k)

Archit.

Obj.
fun.

argmin
θ

∑
xi ,yi∈d

(yi − ŷi )
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Training a CNN-1d-SAL on the periodic hill Reb = 10,595

#Parameters: 6,440
Learning rate: 0.001
Batch size: 1024

Database size: 2,736,000
Training time: 5h13min

#Epoch: 400

HiFiLeD, 14-16th December 2022, Brussels, Belgium © 2023 Cenaero - All rights reserved 8
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A priori validation on the periodic hill Reb = 10,595

Distribution of the wall shear stress Instantaneous wall-shear stress field

Autocorrelations of the predicted structures Power Spectrum Density (PSD)
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A priori validation on the periodic hill Reb = 10,595

Distribution of the wall shear stress Instantaneous wall-shear stress field

Power Spectrum Density (PSD)Autocorrelations of the predicted structures

Of τw,ξ at a given time t computed in the ξ-direction
and averaged in the z-direction.
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A priori validation on the periodic hill Reb = 10,595

Distribution of the wall shear stress Instantaneous wall-shear stress field

Autocorrelations of the predicted structures Power Density Spectrum (PDS)

Of τw,ξ at a given time t computed in the ξ-direction
and averaged in the z-direction.
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A posteriori validation on the CNN-1d-SAL for the periodic hill Reb = 10,595

Velocity profiles averaged over 13.5 flow-through time:

0 1 2 3 4 5 6 7 8 9
u/ub

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y/
h

Remark: The size of the recirculation bubble is underestimated and it impacts the whole domain.
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A posteriori validation on the CNN-1d-SAL for the periodic hill Reb = 10,595

How to correct the recirculation bubble location?

• Directional inconsistency [J. Bae et al., 2022] between

– the direction of the wall shear stress predicted by the network
– the direction of the velocity measured at hwm

• A quick fix in the code:
τw · u < 0 ⇒ τw = 0

• Can also be added as an inequality constraint in the objective function while training the neural
network as,

L =
∑

xi ,yi∈d

[
(τξ,i − τ̂ξ,i )

2 + (τz,i − τ̂z,i )
2
]
+ λ

∑
xi ,yi∈d

ReLU (−τi · ui ) ,

where λ is a certain hyper-parameter that penalizes more or less the directional inconsistency in
the training dataset.
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A posteriori validation on the CNN-1d-SAL for the periodic hill Reb = 10,595

Observation of the streamlines in the recirculation bubble using the quick fix:
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A posteriori validation on the lower wall of the periodic hill Reb = 10,595
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NASA WRLES, L. Temmerman 2003, Reb=10,595, incompressible
Xavier Gloerfelt, Paola Cinnela, 2020, Reb=10,595 and Mb=0.1
Argo-DG wrLES on refined mesh, Reb=10,595 and Mb=0.1
Argo-DG wmLES, Reb=10,595 and Mb=0.1

Mean velocity profiles at three x/h locations on the lower wall compared
to the literature and a Reichardt LOTW (in cyan) computed with Argo-DG
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A posteriori validation on the lower wall of the periodic hill Reb = 10,595
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The recirculation bubble
is increased but the
wmLES still forces an
earlier reattachment.

Note that the Reichardt
LOTW is even worse.
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A posteriori validation on the upper wall of the periodic hill Reb = 10,595
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Argo-DG wrLES on refined mesh, Reb=10,595 and Mb=0.1
A priori prediction by the network
Argo-DG wmLES, Reb=10,595 and Mb=0.1

Mean non-dimensional velocity profiles at two x/h locations
on the upper wall compared to the wrLES on a refined mesh.

Remarks: The wmLES friction coefficient is similar to the one a priori pre-
dicted by the neural network but the a priori one is far from the true value.
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A posteriori validation on the upper wall of the periodic hill Reb = 10,595
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The relative error at
x/h = 0 is 11% and hence
we observe a discrepancy
w.r.t. the wrLES non-
dimensional profiles.
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A posteriori validation on the upper wall of the periodic hill Reb = 10,595
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Conclusion

• The a posteriori validation on the periodic hill, initially, gives:

– a wrong recirculation bubble size;
– a too early reacceleration of the flow;

which impacts the whole physics.

• Using the directional correction proposed earlier, the recirculation bubble size increases, but it is
still smaller than the wrLES one.

• The non-dimensional velocity profiles on the upper wall need to be corrected (i.e., the relative
error of 11% approximately) with a better neural network.

– hard to predict with the neural network;
– need to have more information in the input stencil (e.g., velocity gradient);
– need to change the normalization (i.e., use the friction velocity).
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