Conférence scientifique dans des universités ou centres de recherche (Conférences scientifiques dans des universités ou centres de recherche)
Interpretation of offshore wind management policies identified via partially observable Markov decision processes
Nandar, Hlaing; Morato Dominguez, Pablo Gabriel; Papakonstantinou, K. G. et al.
2022
 

Documents


Texte intégral
EAWE_PhD_Seminar_InterpretationPOMDPs_V2_Oct3.pdf
Postprint Auteur (249.19 kB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale
Télécharger

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Offshore wind turbines; Inspection and maintenance planning; Markov decision processes.
Résumé :
[en] The installation of offshore wind turbines, profiting from available abundant and stable wind resources, has been steadily increasing in the last decade, yet preserving offshore wind structures in a good condition throughout their lifetime still remains a challenge. Structural components are exposed to deterioration mechanisms (e.g., fatigue, corrosion, among others), and far offshore, inspection and maintenance (I&M) operations can be complex and expensive. Hence the need for efficient optimal I&M planning methods has been increased in order to control the risk of structural failures by timely allocating inspection and maintenance interventions. Identifying optimal I&M policies demands the solution of a complex sequential decision-making problem under uncertainty and imperfect information. Whereas time-, condition-, or heuristic-based strategies are conven- tionally followed in the offshore wind industry in order to alleviate the aforementioned computational difficulties, the resulting policies statically select inspection and maintenance actions and/or consist in predefined heuristic de- cision rules, e.g., equidistant inspections, repairs after detection inspection outcomes, which are optimized by ex- ploring a subset out of the vast policy space. Instead, optimal management strategies can be identified via partially observable Markov decision processes (POMDPs), relying on mathematical principles conceived for planning un- der uncertainty [1]. POMDP policies, efficiently computed through point-based solvers, provide optimal adaptive I&M strategies that ultimately result in substantial cost benefits compared to their state-of-the-art counterparts [2], also demonstrated in offshore wind inspection and maintenance planning settings [3]. Even if recently reported results demonstrate the benefits of implementing POMDP-based adaptive policies for the management of offshore wind assets, the interpretation and execution of POMDP-based strategies by decision-makers (e.g., designers, operators, etc.) accustomed to calendar- and/or condition-based conventional I&M approaches might be initially challenging. In this work, we analyze and interpret POMDP-based policies with the objective of accelerating their practical implementation by offshore wind asset management decision-makers. Also, we showcase the inherent flexibility and adaptability properties offered by POMDP-based policies in a typical offshore wind inspection and maintenance planning setting, in which a decision-maker opts for an action other than the one suggested in the optimal POMDP policy.
Disciplines :
Energie
Auteur, co-auteur :
Nandar, Hlaing  ;  Université de Liège - ULiège > Département ArGEnCo > ANAST (Systèmes de transport et constructions navales)
Morato Dominguez, Pablo Gabriel ;  Université de Liège - ULiège > Département ArGEnCo > ANAST (Systèmes de transport et constructions navales)
Papakonstantinou, K. G.;  The Pennsylvania State University > Department of Civil & Environmental Engineering
Andriotis, C. P.;  Delft University of Technology > Faculty of Architecture & the Built Environment
Rigo, Philippe  ;  Université de Liège - ULiège > Département ArGEnCo > ANAST (Systèmes de transport et constructions navales)
Langue du document :
Anglais
Titre :
Interpretation of offshore wind management policies identified via partially observable Markov decision processes
Date de publication/diffusion :
novembre 2022
Nom de la manifestation :
EAWE PhD Seminar 2022
Organisateur de la manifestation :
PhairywinD
Lieu de la manifestation :
Bruges, Belgique
Date de la manifestation :
2-4 Nov 2022
Manifestation à portée :
International
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Intitulé du projet de recherche :
PhairywinD (https://www.phairywind.be/)
Organisme subsidiant :
SPF Economie - Service Public Fédéral Économie, PME, Classes moyennes et Énergie
Disponible sur ORBi :
depuis le 14 mai 2023

Statistiques


Nombre de vues
82 (dont 6 ULiège)
Nombre de téléchargements
58 (dont 1 ULiège)

Bibliographie


Publications similaires



Contacter ORBi