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1 Introduction
The installation of offshore wind turbines, profiting from available abundant and stable wind resources, has been
steadily increasing in the last decade, yet preserving offshore wind structures in a good condition throughout their
lifetime still remains a challenge. Structural components are exposed to deterioration mechanisms (e.g., fatigue,
corrosion, among others), and far offshore, inspection and maintenance (I&M) operations can be complex and
expensive. Hence the need for efficient optimal I&M planning methods has been increased in order to control the
risk of structural failures by timely allocating inspection and maintenance interventions.

Identifying optimal I&M policies demands the solution of a complex sequential decision-making problem
under uncertainty and imperfect information. Whereas time-, condition-, or heuristic-based strategies are conven-
tionally followed in the offshore wind industry in order to alleviate the aforementioned computational difficulties,
the resulting policies statically select inspection and maintenance actions and/or consist in predefined heuristic de-
cision rules, e.g., equidistant inspections, repairs after detection inspection outcomes, which are optimized by ex-
ploring a subset out of the vast policy space. Instead, optimal management strategies can be identified via partially
observable Markov decision processes (POMDPs), relying on mathematical principles conceived for planning un-
der uncertainty [1]. POMDP policies, efficiently computed through point-based solvers, provide optimal adaptive
I&M strategies that ultimately result in substantial cost benefits compared to their state-of-the-art counterparts [2],
also demonstrated in offshore wind inspection and maintenance planning settings [3].

Even if recently reported results demonstrate the benefits of implementing POMDP-based adaptive policies
for the management of offshore wind assets, the interpretation and execution of POMDP-based strategies by
decision-makers (e.g., designers, operators, etc.) accustomed to calendar- and/or condition-based conventional
I&M approaches might be initially challenging. In this work, we analyze and interpret POMDP-based policies
with the objective of accelerating their practical implementation by offshore wind asset management decision-
makers. Also, we showcase the inherent flexibility and adaptability properties offered by POMDP-based policies
in a typical offshore wind inspection and maintenance planning setting, in which a decision-maker opts for an
action other than the one suggested in the optimal POMDP policy.

2 Optimal I&M planning for offshore wind structures through POMDPs
A Markov decision process (MDP) is a 5-tuple ⟨S,A,T,R,γ⟩ controlled stochastic process for optimal planning
under uncertainty and perfect information. At every decision step, the agent observes state s∈ S and takes an action
a ∈ A, then the state randomly transitions to state s′ ∈ S according to a stochastic transitional model T (s,a,s′) =
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P(s′|s,a), and finally the agent receives a reward R(s,a). An MDP policy (π : S → A) prescribes actions as a
function of the current state, with the main objective of identifying the optimal policy π∗(s), resulting in the
maximum expected rewards (or minimum expected cost).

A POMDP is a generalization of an MDP in which the agent only receives partial information about the
current state. In this case, the agent reasons according to the current belief b, i.e., a probability distribution
over states. A POMDP is defined as a 7-tuple ⟨S,A,O,T,Z,R,γ⟩ controlled stochastic process. While a POMDP
transitional model corresponds to the underlying MDP, an observation model is additionally defined by specifying
the probability Z(o,s′,a) = P(o | s′,a) of collecting observation o ∈ O after taking action a. After taking action a
and collecting observation o, the belief b is updated via Bayes’ rule:

b(s′) ∝ P(o | s′,a)∑
s∈S

P(s′ | s,a)b(s). (1)

Since beliefs are dynamically updated, the current belief, b is a sufficient statistic of the past taken actions and
collected observations. A POMDP policy therefore maps the current belief b to the action. As for an MDP, the
goal is to identify the optimal policy π∗(b) leading to the maximum expected reward.

The decision-making problem corresponding to the optimal inspection and maintenance planning for offshore
wind structures can be adequately formulated as a POMDP, in which the agent reasons in a stochastic environment
(i.e., probabilistic deterioration model) and under imperfect information (i.e., measurement uncertainty associated
with inspection techniques). Once the optimal POMDP policy π∗(b) is identified, the decision-maker (e.g., oper-
ator, designer, etc) selects inspection and/or maintenance actions according to the current belief state. As opposed
to static decision rules, e.g., calendar- or condition-based maintenance approaches, POMDP policies are inherently
adaptive since beliefs are dynamically updated, thus resulting in substantial cost benefits.

2.1 Solving POMDPs
The exact solution of a POMDP demands the identification of optimal actions for each belief state, which as
mentioned before, is a continuous probability distribution over states, thus rendering the problem computationally
challenging. Whereas value iteration algorithms or grid-based interpolation techniques might work well for solving
very low-dimensional state space POMDPs, their application to higher dimensional state space POMDPs remains
limited, also due to computational tractability problems. However, the recently developed point-based solvers, by
executing Bellman backups only for a set of reachable belief points, have enabled the solution of medium to high
dimensional state space POMDPs [4]. Since the value function is generally piece-wise linear and convex, it can be
parametrized through a finite set Γ of α-vectors, each of them associated with an action [2]. At a certain belief state,
the optimal action is, therefore, indicated by the α-vector that maximizes the value function. Point-based solvers
are usually developed for the solution of infinite horizon settings, yet practical applications normally correspond to
finite horizon problems, e.g., the operational lifetime of offshore wind structural components is often considered as
20 or 30 years. In that case, the infinite horizon POMDP can be transformed into a finite horizon POMDP through
state augmentation techniques [1, 2].

3 Interpretation of POMDP-based management policies
With the objective of facilitating the interpretation of POMDP-based offshore wind management policies, we
conduct hereafter an I&M planning case study for a fatigue-sensitive offshore wind structural component, inspired
by [3]. The I&M decision problem is formulated as a POMDP, adequately defining the elements of the POMDP
tuple, as follows:

• States: The structural component deterioration states correspond to the discretized fatigue crack size. In this
study, the crack size is discretized into 40 deterioration states, with the last one indicating a failure state.

• Actions: Three action-observation combinations are considered, (i) Do-nothing/No-inspection (DN-NI), (ii)
Do-nothing/Inspection (DN-I), and (iii) Perfect-repair/No-inspection (PR-NI).

• Observations: Inspections provide binary indications, resulting in either ‘crack detection’ or ‘no crack de-
tection’. If an inspection is not performed, no additional information is collected.

• Transition probabilities: The transitional model associated with a Do-nothing (DN) action is estimated
through crack propagation Monte Carlo simulations, where the crack growth is computed according to Paris



18th EAWE PhD Seminar on Wind Energy
2-4 November 2022

Bruges, Belgium

law. If a Perfect-repair (PR) action is undertaken, the structural component deterioration transitions to its
initial belief condition state.

• Observation probabilities: The observation model is defined according to the detection probability curve that
corresponds to eddy current inspection techniques [5].

• Rewards: At every decision step, the agent collects a reward, R(b,a), which is a weighted sum of the belief
probability b(s) and state reward R(s,a). A penalization of one million monetary units is charged at the last
state, i.e., failure condition, whereas 1,000 and 10,000 thousand monetary units are assigned as inspection
and repair costs, respectively.

In this case study, the structural component lifetime is defined as 20 years and the corresponding finite horizon
POMDP is computed via SARSOP point-based solver [6]. The resulting optimal policies are parametrized by a
set of α-vectors, and as mentioned before, each α-vector is associated with a specific action. At each decision
point, the decision-maker selects the α-vector (and corresponding action) that maximizes the value function V ∗(b)
(minimizes the total expected cost):

V ∗(b) = max
α∈Γ

∑
s∈S

b(s)α(s). (2)

The expected total cost associated with each α-vector can be simply computed as the weighted sum of the ex-
pected total cost corresponding to a specific deterioration state α(s) and the probability of being in that state b(s).
Figure 1a illustrates the expected total cost resulting from three α-vectors, indicating both the corresponding dete-
rioration state values along with the representation of the initial belief b0. The key observation is that the actions
recommended in POMDP-based policies are selected according to the current belief state b, which is dynamically
updated after each taken action and collected observation, as mentioned in Section 2. The expected costs associated
with all α-vectors available at the initial decision step (i.e., b0) are additionally represented in Figure 1b. Logically,
the optimal decision at this point is DN-NI, and its corresponding value function indicates the total expected cost
E[CT ] for the considered 20-year decision horizon.
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Figure 1: Initial probability distribution over deterioration states (i.e., initial belief, b0) and expected total cost
resulting from each α-vector at the initial decision step.

3.1 What if the optimal policy is not strictly followed?
In this study, we investigate the effect of selecting an alternative action rather than the optimal one suggested in
the POMDP policy. We consider that the optimal POMDP policy is followed up to year 7, and at that point,
the decision-maker is evaluating the potential economic implications of avoiding a perfect repair maintenance
intervention, which is the action suggested in the optimal POMDP policy, as showcased in Figure 2b. Previously,
two crack detection inspection outcomes were reported at years 6 and 7, thus indicating a high structural failure risk,
which could be effectively mitigated by conducting a repair action (Figure 3a). In that case, the structural condition
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Figure 2: Updated beliefs and corresponding total expected cost for all action-observation combinations at year 8.

will be restored, and the updated belief will transition to its initial deterioration condition, b0, as illustrated in
Figure 2a with green markers. If the decision-maker opts, however, for an alternative action at year 8, the expected
total cost and the regret, i.e. the extra cost associated with potentially suboptimal actions, can be straightforwardly
computed through a Bellman backup operation, as:

V (b7) = ∑
s∈S

b7(s)R(s,a)+ γV (b′
7), (3)

where b and b′ correspond to the current and updated beliefs, respectively, and R(s,a) stands for the reward
associated with the action taken. Specifically, the potential alternative actions at this decision point are:

• Do-nothing/No-inspection (DN-NI), in which the fatigue deterioration will naturally progress according to
the defined transition model, as illustrated with grey markers in Figure 2a.

• Do-nothing/Inspection (DN-I), which can result in either a crack detection or no crack detection outcome.
The corresponding updated beliefs are plotted in Figure 2a with red and blue markers, respectively. Since
two inspection outcomes can be collected, in this case, the expected total cost estimated can be computed as:

V (b7) = ∑
s∈S

b7(s)R(s,aDN−I)+ γ

[
∑

o∈O
p(o | b′

7,aDN−I ) ·V (b′
7,aDN−I ,o)

]
, (4)

where p(o | b′) represents the probability associated with each inspection outcome.

Gathering all action-observation combinations, Figure 2b illustrates the expected cost associated with each action.
The suggested action and expected total cost corresponding to each updated belief, b′, can be directly computed
through the α-vectors included in the original POMDP policy, as indicated in Equation (2). For instance, if the
decision-maker follows the optimal policy and opts for a perfect repair action at year 8, the suggested subsequent
optimal action is DN-NI (Figure 3a). Instead, if the decision-maker selects a DN-NI action at year 8, the logical
suggested action is an immediate repair action the following year. Note that in the reported results, the total
expected cost, i.e., V (b′), is computed from the original POMDP policy. In order to exactly evaluate the economic
implication of selecting suboptimal actions, the formulated POMDP can be solved again, considering b′ as the
initial belief in a reduced finite decision horizon, which corresponds, in this particular example, to twelve time
steps. However, only minor differences in the estimation of the expected total cost between the two aforementioned
approaches are observed in this study.

Further examining all alternative action-observation combinations available at year 8, Figure 3 showcases
typical resulting policy realizations. As one could expect, a perfect repair is suggested after a DN-NI action
is selected at year 8 (Figure 3b), then the structural component condition is restored, and no additional future
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interventions are usually needed. If a DN-I action is taken at year 8, the POMDP policy suggests a subsequent
repair action after a crack detection inspection outcome is observed (Figure 3c), whereas if the inspection results
in a no detection outcome, a repair is not planned, and instead, the policy realization shows a series of inspections
for the remainder of the horizon (Figure 3d).
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(a) Policy realization for aPR−NI (following the original op-
timal POMDP policy).
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(b) Policy realization for aDN−NI . A repair action is imme-
diately suggested the next year.
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(c) Policy realization for aDN−I ,oD. A repair action is im-
mediately suggested the next year.
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(d) Policy realization for aDN−I ,oND. A repair action is not
subsequently suggested.

Figure 3: Representation of typical policy realizations for all action-observation combinations available at year 8.

In summary, Table 1 lists the expected total cost associated with all available actions at year 8 and their cor-
responding regret E[CP]. It can be observed that, in this study, the most suboptimal choice is a DN-NI action,
as it results in a yet higher failure risk after year 8, while a repair still needs to be allocated the following year.
Interestingly, a DN-I action is less suboptimal, in this case, since subsequent no detection inspection outcomes can
still be observed, thus slightly reducing the need of a perfect repair action.

Action at year 8 E[CT ] (monetary units) E[CP](%)
PR-NI (Optimal) 12,493 -

DN-NI 15,552 24.5

DN-I
{

p(oND | b′
7,aDN−I ) = 0.5437

p(oD | b′
7,aDN−I ) = 0.4563 15,428 23.5

Table 1: Regret incurred when selecting alternative actions other than the one suggested in the optimal original
POMDP policy.
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4 Conclusion
In an offshore wind inspection and maintenance (I&M) planning context, we describe the fundamentals of Par-
tially Observable Markov Decision Processes (POMDPs) -based policies and showcase their inherent adaptive and
flexible properties. Through a typical offshore wind I&M planning case study, we also demonstrate that decision-
makers following POMDP-based strategies can efficiently and swiftly quantify the effect of selecting alternative
actions rather than those suggested in the optimal POMDP policy. Based on the reported benefits offered by
POMDP-based policies in terms of optimality [1, 7], adaptability [2, 8], and flexibility [3], along with the inter-
pretability aspects introduced in this work, we encourage the adoption of POMDP-based I&M planning methods
in the offshore wind industry.
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