AOP, Adverse Outcome Pathway; NAM, New Approach Methodology; NLP, Natural Language Processing; Toxicology; Biochemistry; Biotechnology; Biomedical Engineering
Abstract :
[en] Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiating event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies (NAMs), which aim to reduce the use of animal testing for toxicology purposes. However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and information, from available literature to knowledge databases. Often, this information is in the form of free text, also called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious and increasingly time-consuming to process manually with the growing volume of data available. The advancement of machine learning provides alternative solutions to this challenge. To extract and organize information from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques. We review here some of the recent progress in the NLP field, and show how these techniques have already demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and reliably extract and combine relevant toxicological information from text. This data can be used to map underlying mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately allowing animal-free human-based hazard and risk assessment.
Disciplines :
Biotechnology Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Corradi, Marie P F ; Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Heidelberglaan 7, Utrecht 3584 CS, the Netherlands
de Haan, Alyanne M; Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Heidelberglaan 7, Utrecht 3584 CS, the Netherlands
Staumont, Bernard ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Piersma, Aldert H; Centre for Health Protection of the Dutch National Institute for Public Health and the Environment (RIVM), Heidelberglaan 8, Utrecht 3584 CS, the Netherlands
Geris, Liesbet ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Pieters, Raymond H H; Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Heidelberglaan 7, Utrecht 3584 CS, the Netherlands
Krul, Cyrille A M; Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Heidelberglaan 7, Utrecht 3584 CS, the Netherlands
Teunis, Marc A T; Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Heidelberglaan 7, Utrecht 3584 CS, the Netherlands
Language :
English
Title :
Natural language processing in toxicology: Delineating adverse outcome pathways and guiding the application of new approach methodologies.
Punt, A., Bouwmeester, H., Blaauboer, B.J., Coecke, S., Hakkert, B., Hendriks, D.F.G., Jennings, P., Kramer, N.I., Neuhoff, S., Masereeuw, R., Paini, A., Peijnenburg, A.A.C.M., Rooseboom, M., Shuler, M.L., Sorrell, I., Spee, B., Strikwold, M., Van der Meer, A.D., Van der Zande, M., Vinken, M., Yang, H., Bos, P.M.J., Heringa, M.B., New approach methodologies (NAMs) for human-relevant biokinetics predictions. Meeting the paradigm shift in toxicology towards an animal-free chemical risk assessment. ALTEX 37 (2020), 607–622, 10.14573/altex.2003242.
Ankley, G.T., Bennett, R.S., Erickson, R.J., Hoff, D.J., Hornung, M.W., Johnson, R.D., Mount, D.R., Nichols, J.W., Russom, C.L., Schmieder, P.K., Serrrano, J.A., Tietge, J.E., Villeneuve, D.L., Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29 (2010), 730–741, 10.1002/etc.34.
Villeneuve, D.L., Crump, D., Garcia-Reyero, N., Hecker, M., Hutchinson, T.H., LaLone, C.A., Landesmann, B., Lettieri, T., Munn, S., Nepelska, M., Ottinger, M.A., Vergauwen, L., Whelan, M., Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142 (2014), 312–320, 10.1093/toxsci/kfu199.
Clippinger, A.J., Allen, D., Behrsing, H., BéruBé, K.A., Bolger, M.B., Casey, W., DeLorme, M., Gaça, M., Gehen, S.C., Glover, K., Hayden, P., Hinderliter, P., Hotchkiss, J.A., Iskandar, A., Keyser, B., Luettich, K., Ma-Hock, L., Maione, A.G., Makena, P., Melbourne, J., Milchak, L., Ng, S.P., Paini, A., Page, K., Patlewicz, G., Prieto, P., Raabe, H., Reinke, E.N., Roper, C., Rose, J., Sharma, M., Spoo, W., Thorne, P.S., Wilson, D.M., Jarabek, A.M., Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicol Vitr 52 (2018), 131–145, 10.1016/j.tiv.2018.06.009.
Spinu, N., Bal-Price, A., Cronin, M.T.D., Enoch, S.J., Madden, J.C., Worth, A.P., Development and analysis of an adverse outcome pathway network for human neurotoxicity. Arch Toxicol 93 (2019), 2759–2772, 10.1007/s00204-019-02551-1.
Burden, N., Sewell, F., Andersen, M.E., Boobis, A., Chipman, J.K., Cronin, M.T.D., Hutchinson, T.H., Kimber, I., Whelan, M., Adverse Outcome Pathways can drive non-animal approaches for safety assessment. J Appl Toxicol JAT 35 (2015), 971–975, 10.1002/jat.3165.
Khan, P.M., Roy, K., Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR). Exp Opin Drug Discov 13 (2018), 1075–1089, 10.1080/17460441.2018.1542428.
Patlewicz, G., Ball, N., Boogaard, P.J., Becker, R.A., Hubesch, B., Building scientific confidence in the development and evaluation of read-across. Regulatory toxicology and pharmacology. RTP 72 (2015), 117–133, 10.1016/j.yrtph.2015.03.015.
Luechtefeld, T., Marsh, D., Rowlands, C., Hartung, T., Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol Sci 165 (2018), 198–212, 10.1093/toxsci/kfy152.
Perkins, E.J., Ashauer, R., Burgoon, L., Conolly, R., Landesmann, B., Mackay, C., Murphy, C.A., Pollesch, N., Wheeler, J.R., Zupanic, A., Scholz, S., Building and applying quantitative adverse outcome pathway mod-els for chemical hazard and risk assessment. Environ Toxicol Chem 38 (2019), 1850–1865, 10.1002/etc.4505.
OECD. Users’ handbook supplement to the guidance document for developing and Assessing adverse outcome pathways. 2018, OECD, doi:10.1787/5jlv1m9d1g32-en.
Becker, R.A., Ankley, G.T., Edwards, S.W., Kennedy, S.W., Linkov, I., Meek, B., Sachana, M., Segner, H., Van Der Burg, B., Villeneuve, D.L., Watanabe, H., Barton-Maclaren, T.S., Increasing scientific confidence in adverse outcome pathways: application of tailored bradford-hill considerations for evaluating weight of evidence. Regul Toxicol Pharma RTP 72 (2015), 514–537, 10.1016/j.yrtph.2015.04.004.
Horvat, T., Landesmann, B., Lostia, A., Vinken, M., Munn, S., Whelan, M., Adverse outcome pathway development from protein alkylation to liver fibrosis. Arch Toxicol 91 (2017), 1523–1543, 10.1007/s00204-016-1814-8.
Svingen, T., Villeneuve, D.L., Knapen, D., Panagiotou, E.M., Draskau, M.K., Damdimopoulou, P., O'Brien, J.M., A pragmatic approach to adverse outcome pathway development and evaluation. Toxicol Sci 184 (2021), 183–190, 10.1093/toxsci/kfab113.
Kleinstreuer, N.C., Sullivan, K., Allen, D., Edwards, S., Mendrick, D.L., Embry, M., Matheson, J., Rowlands, J.C., Munn, S., Maull, E., Casey, W., Adverse outcome pathways: from research to regulation scientific workshop report. Regul Toxicol Pharmacol RTP 76 (2016), 39–50, 10.1016/j.yrtph.2016.01.007.
Cohen, S., Chapter 2 - the basics of machine learning: strategies and techniques. Cohen, S., (eds.) Artificial intelligence and deep learning in pathology, 2021, Elsevier, 13–40, 10.1016/B978-0-323-67538-3.00002-6.
Shalev-Shwartz, S., Ben-David, S., Understanding machine learning: from theory to algorithms. 2014, Cambridge University Press, Cambridge, 10.1017/CBO9781107298019.
Chong, W.Y., Selvaretnam, B., Soon, L.K., Natural language processing for sentiment analysis: an exploratory analysis on tweets. Proceedings of the 4th International Conference on Artificial Intelligence with Applications in Engineering and Technology, 2014, 212–217, 10.1109/ICAIET.2014.43.
Schmidt, A., Wiegand, M., A survey on hate speech detection using natural language processing. Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media, 2017, Association for Computational Linguistics, Valencia, Spain, 1–10, 10.18653/v1/W171101.
Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes, M., Dean, J., 2016. Google's neural machine translation system: bridging the gap between human and machine translation. arXiv:1609.08144 [cs]. doi:10.48550/arXiv.1609.08144.
Webster, J.J., Kit, C., Tokenization as the initial phase in NLP. Proceedings of the 14th Conference on Computational Linguistics - Volume 4, COLING ’92, 1992, Association for Computational Linguistics, USA, 1106–1110, 10.3115/992424.992434.
Nadkarni, P.M., Ohno-Machado, L., Chapman, W.W., Natural language processing: an introduction. J Am Med Inform Assoc 18 (2011), 544–551, 10.1136/amiajnl-2011-000464.
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., Bolton, E.E., PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49 (2020), D1388–D1395, 10.1093/nar/gkaa971.
Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation of word representations in vector space. arXiv:1301.3781 [cs]. doi:10.48550/arXiv.1301.3781.
Mackenzie, J., Benham, R., Petri, M., Trippas, J.R., Culpepper, J., Moffat, A., CC-news-en: a large English news corpus. CIKM, 2020, 10.1145/3340531.3412762.
Pham, N.Q., Kruszewski, G., Boleda, G., Convolutional neural network language models. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016, Association for Computational Linguistics, Austin, Texas, 1153–1162, 10.18653/v1/D16-1123.
Sundermeyer, M., Schlüter, R., Ney, H., Interspeech, 2012. LSTM neural networks for language modeling. doi:10.21437/Interspeech.2012-65.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al. Attention is all you need. 2017, NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems.
Kim, J.D., Wang, Y., Takagi, T., Yonezawa, A., Overview of Genia event task in BioNLP shared task 2011. Proceedings of the BioNLP Shared Task 2011 Workshop, 2011, Association for Computational Linguistics, Portland, Oregon, USA, 7–15.
Neumann, M., King, D., Beltagy, I., Ammar, W., ScispaCy: fast and robust models for biomedical natural language processing. Proceedings of the 18th BioNLP Workshop and Shared Task 319–327, 2019, Association for Computational Linguistics doi:10.18653/v1/W19-5034.
Pletscher-Frankild, S., Pallejà, A., Tsafou, K., Binder, J.X., Jensen, L.J., DISEASES: text mining and data integration of disease–gene associations. Methods Text Mining Biomed Lit 74 (2015), 83–89, 10.1016/j.ymeth.2014.11.020.
Cañada, A., Capella-Gutierrez, S., Rabal, O., Oyarzabal, J., Valencia, A., Krallinger, M., LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes. Nucleic Acids Res 45 (2017), W484–W489, 10.1093/nar/gkx462.
Minet, E., Haswell, L.E., Corke, S., Banerjee, A., Baxter, A., Verrastro, I., De Abreu E Lima, F., Jaunky, T., Santopietro, S., Breheny, D., Gaça, M.D., Application of text mining to develop AOP-based mucus hypersecretion genesets and confirmation with in vitro and clinical samples. Sci Rep, 11, 2021, 6091, 10.1038/s41598-021-85345-9.
Luettich, K., Talikka, M., Lowe, F.J., Haswell, L.E., Park, J., Gaca, M.D., Hoeng, J., The adverse outcome pathway for oxidative stress-mediated EGFR activation leading to decreased lung function. Appl In Vitro Toxicol 3 (2017), 99–109, 10.1089/aivt.2016.0032.
Jornod, F., Jaylet, T., Blaha, L., Sarigiannis, D., Tamisier, L., Audouze, K., AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development. Bioinformatics 38 (2022), 1173–1175, 10.1093/bioinformatics/btab750.
Carvaillo, J.C., Barouki, R., Coumoul, X., Audouze, K., Linking Bisphenol S to adverse outcome pathways using a combined text mining and systems biology approach. Environ. Health Perspect., 127, 2019, 47005, 10.1289/EHP4200.
Jornod, F., Rugard, M., Tamisier, L., Coumoul, X., Andersen, H.R., Barouki, R., Audouze, K., AOP4EUpest: mapping of pesticides in adverse outcome pathways using a text mining tool. Bioinformatics 36 (2020), 4379–4381, 10.1093/bioinformatics/btaa545.
Weissenbacher, D., Sarker, A., Klein, A., O'Connor, K., Magge, A., GonzalezHernandez, G., Deep neural networks ensemble for detecting medication mentions in tweets. J Am Med Inf Assoc JAMIA 26 (2019), 1618–1626, 10.1093/jamia/ocz156.
Wang, X., Xu, X., Tong, W., Roberts, R., Liu, Z., InferBERT: a transformer-based causal inference framework for enhancing pharmacovigilance. Front Artif Intell, 4, 2021, 659622, 10.3389/frai.2021.659622.
Smith, C.L., Eppig, J.T., The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med 1 (2009), 390–399, 10.1002/wsbm.44.
https://ontox-project.eu/. [Accessed 25 February 2022].
https://pubmed.ncbi.nlm.nih.gov/. [Accessed 7 February 2022].
https://vhp4safety.nl/. [Accessed 25 February 2022].
https://aopwiki.org/aops/18. (Accessed 5 May 2022)