
Biomaterials and Biosystems 7 (2022) 100061 

Contents lists available at ScienceDirect 

Biomaterials and Biosystems 

journal homepage: www.elsevier.com/locate/bbiosy 

Natural language processing in toxicology: Delineating adverse outcome 

pathways and guiding the application of new approach methodologies 

Marie P.F. Corradi a , ∗ , Alyanne M. de Haan 

a , Bernard Staumont b , Aldert H. Piersma 

c , 

Liesbet Geris b , Raymond H.H. Pieters a , Cyrille A.M. Krul a , Marc A.T. Teunis a , ∗ 

a Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Heidelberglaan 7, Utrecht 3584 CS, the Netherlands 
b Biomechanics Research Unit, GIGA In Silico Medicine, University of Liège, Avenue de l’Hôpital 11, Liège 4000, Belgium 

c Centre for Health Protection of the Dutch National Institute for Public Health and the Environment (RIVM), Heidelberglaan 8, Utrecht 3584 CS, the Netherlands 

a r t i c l e i n f o 

Keywords: 

Natural Language Processing 

Adverse Outcome Pathways 

New Approach Methodologies 

Toxicology 

a b s t r a c t 

Adverse Outcome Pathways (AOPs) are conceptual frameworks that tie an initial perturbation (molecular initiat- 

ing event) to a phenotypic toxicological manifestation (adverse outcome), through a series of steps (key events). 

They provide therefore a standardized way to map and organize toxicological mechanistic information. As such, 

AOPs inform on key events underlying toxicity, thus supporting the development of New Approach Methodologies 

(NAMs), which aim to reduce the use of animal testing for toxicology purposes. 

However, the establishment of a novel AOP relies on the gathering of multiple streams of evidence and infor- 

mation, from available literature to knowledge databases. Often, this information is in the form of free text, also 

called unstructured text, which is not immediately digestible by a computer. This information is thus both tedious 

and increasingly time-consuming to process manually with the growing volume of data available. The advance- 

ment of machine learning provides alternative solutions to this challenge. To extract and organize information 

from relevant sources, it seems valuable to employ deep learning Natural Language Processing techniques. 

We review here some of the recent progress in the NLP field, and show how these techniques have already 

demonstrated value in the biomedical and toxicology areas. We also propose an approach to efficiently and 

reliably extract and combine relevant toxicological information from text. This data can be used to map underlying 

mechanisms that lead to toxicological effects and start building quantitative models, in particular AOPs, ultimately 

allowing animal-free human-based hazard and risk assessment. 
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. Introduction 

Guaranteeing the health of humans means that every product coming

n the market needs to be thoroughly tested for possible adverse effects

n human health. In the past, this has largely been done with the help

f animal testing. However, animal testing raises ethical issues and is

ot a sustainable evaluation method considering the time and financial

nvestments as well as the growing number of substances to evaluate,

e it for agricultural, cosmetic, food, medical or energy applications.

or that purpose, a new class of evaluation methods, the New Approach

ethodologies (NAMs), have emerged. NAMs refer to any non-animal-

ased method, whether in vitro or in silico [1] . 

Adverse Outcome Pathways (AOPs) are a standardized description

f toxicological mechanistic information and can form the basis for de-

elopment of New Approach Methodologies (NAMs). These mechanistic

rameworks link molecular triggers to an adverse outcome via a series
Abbreviations: NLP, Natural Language Processing; AOP, Adverse Outcome Pathwa
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f steps covering various biological levels, and depend on a wealth of

ata to provide strong evidence of the relationships between each step

2] . Traditionally, this relies heavily on animal testing. However, several

ngoing projects focus on making better use of the knowledge already

vailable in literature, in particular ONTOX [ 43 ] and VHP4Safety [ 45 ].

nformation extraction was previously mostly done manually, while the

ody of evidence in scientific literature is growing every year. There-

ore, new methods are being developed to scan existing literature and

xtract relevant knowledge from it using machine learning. This paper

s focusing on the potential of automated text analysis, better known as

atural Language Processing (NLP), to support and facilitate the process

f knowledge extraction for AOP building, leading to the development

f NAMs. 

The recent advances in NLP and the way they can be applied to sup-

ort AOPs development will be discussed in the scope of current projects

NTOX and VHP4Safety. 
y; NAM, New Approach Methodology. 
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. Adverse outcome pathways in modern toxicology 

.1. What are AOPs? 

An AOP is a framework to organize existing knowledge pertaining

o the mechanisms by which adverse effects are triggered in human or-

anisms [2] . It spans various levels of biological organization, starting

ith a Molecular Initiating Event (MIE) and ending with one or mul-

iple Adverse Outcome(s) (AO) at the organ, organism or population

evel. An outcome is considered as AO if it is relevant for hazard and

isk assessment. The MIE and AO are connected by a series of molec-

lar, cellular or organ-level events called Key Events (KE). Each pair

f KE is connected by a Key Event Relationship (KER) that describes

he relationship between the upstream and downstream event and can

e causal, mechanistic, inferential or correlation-based. The KER there-

ore supports and gives quantitative insight for the extrapolation of the

ownstream KE from the state of the upstream KE [3] . In order to prove

he relation between KEs, KERs rely on a wealth of information to feed

he weight of evidence (WoE) supporting their existence. In that scope,

OPs can be used to identify critical missing information for hazard and

isk assessment. AOP developers can also identify endpoints that can be

ssessed in vitro or in silico by a NAM to estimate risk for human, hence

ontributing to a transition towards animal-free testing [4] . 

Of course, in reality toxicological mechanisms are more complex.

hey are neither linear nor one-directional, but rather a network of in-

eractions at the molecular, cellular and organ level, including feedback

oops that allow to understand why lower doses of a compound are not

oxic despite triggering a MIE. AOPs are therefore intended to be mod-

lar and combinable in AOP networks, as in Spinu et al. [5] . 

AOPs are applicable to multiple species, by focusing on mechanistic

elations between KEs rather than apical endpoints in specific species.

ndeed, identifying conserved molecular events between species will

elp regulators extrapolate effects thus reducing the number of animals

eeded to predict adverse outcomes in humans [6] . 

Moreover, AOPs are stressor-agnostic: the first element of an AOP is

 MIE. This event can be triggered by one or multiple chemicals or other

tressors (e.g., radiation, inflammation), but is not defined by a single

ne, making AOPs much more flexible than previous approaches [3] . 

.2. AOPs and NAMs 

On the chemical level, structure-based models are used to predict

hemical activity, such as QSARs (Quantitative Structure-Activity Rela-

ionship) [7] , but also to evaluate chemical similarity and allow group-

ng of chemicals, such as RA (Read-Across) [8] . RASAR (Read-Across

tructure-Activity Relationship), a combination of the previous two ap-

roaches, has also showed promising results. RASAR uses chemical haz-

rd properties as well as structural properties to predict hazard [9] .

hese methods can be combined with AOPs to allow for more efficient

creening of compounds by determining which chemicals are likely to

rigger the MIE based on their structural properties. They can therefore

elp rule entire groups of chemicals in or out for testing, without the

eed for additional data. By drastically decreasing the amount of chem-

cals to test, these approaches support the reduction of required animal

esting and therefore fall under the denomination of NAMs. 

.3. Current approaches building AOPs 

The construction of an AOP relies heavily on the gathering and

eviewing of extensive data and literature, in order to support confi-

ence and adoption [10] . The OECD [11] has suggested the adoption

f tailored Bradford-Hill (BH) considerations to assess the confidence

n an AOP. The BH criteria were originally designed to support evalua-

ion of causality of relationships for epidemiological evidence and were

dapted to fit the AOP framework. In Becker et al. [12] , these criteria

re referred to as: 
2 
1 Biological plausibility of KERs: what is the level of understanding

and acceptance of the biology behind a given KER? 

2 Empirical support for KERs: dose-response, temporality, and inci-

dence 

3 Essentiality of (KEs): blocking an upstream KE results in the down-

stream KE not occurring. This can also be proved reversibly, in other

words removing the block on the upstream KE leads to the down-

stream KE happening again. 

These criteria are demonstrated in the article by Horvat et al. [13] ,

escribing the AOP leading to liver fibrosis from protein alkylation.

orvat et al. [13] followed a top-down approach, selecting an adverse

utcome of interest and tracing it back to the key events and MIE(s)

f interest. Though AOPs are stressor-agnostic, the authors have used

hemicals clinically known to trigger the AO of interest, namely car-

on tetrachloride and allyl alcohol, in order to understand the mech-

nistic process behind the biological response. An overview of all the

vidence supporting each KE or KER is also provided, ranging between

wo and nine supporting scientific articles for each item, totaling close

o 180 references for this paper. The authors most likely first had to

creen existing literature to select relevant articles. A PubMed search

sing the keywords liver fibrosis AND (carbon tetrachloride OR allyl al-

ohol), and limiting the results to before 2017, yielded more than 3500

esults https://pubmed.ncbi.nlm.nih.gov/ [ 44 ]. Reviewing so many pa-

ers manually was evidently very cumbersome. 

It is clear that AOP building depends on the availability and organi-

ation of data. The amount and quality of data used is actually critical to

rive confidence and endorsement from peers as well as support usage

14] . Because AOPs are based on manually constructed relationships,

oE determinations are pivotal for their acceptance and usefulness. The

H criteria adapted for application in the AOP framework are a good

tarting point when considering (semi-)automated construction of AOPs

nd any computational approach should be built in concordance. Klein-

treuer et al. [15] have already suggested the potential of data science

o help provide suggestions of AOP associations from scientific litera-

ure [15] . Here we propose to use Natural Language Processing (NLP)

o extract AOP-relevant relationships, in concordance with the BH cri-

eria, as one way of moving beyond manual construction of AOPs and

nto computer-aided extraction of existing knowledge from text. 

. Advances in Natural Language Processing 

.1. Natural Language Processing techniques and evolution 

Machine learning refers to the ability of a computer to learn from

ata, rather than being explicitly programmed to accomplish a given

ask [16] . This is often used to mimic human behavior: for example,

ecognizing a specific person on a picture, understanding a piece of text

r determining a causal relationship between two events [17] . Harvest-

ng computing power can multiply scientific discoveries by analyzing

arge amounts of data and finding previously unknown relationships or

nowledge. Machine learning starts with data as an input, and learns a

athematical model on this data. As it operates on mathematical trans-

ormations, any input to a machine learning model is numerical. 

NLP is a machine learning field concerned with automatically ana-

yzing human language. It has broad application, from characterizing

entiments and detecting hate speech in social media [ 18 , 19 ] to auto-

atic machine translation from one human language to another [20] .

hen building AOPs, NLP could be used to programmatically retrieve

cientific articles, fragment them into paragraphs of interest and auto-

atically mine the relevant relationships between MIEs, KEs and AOs.

his information then needs to be stored in a machine-readable way.

he AOP developer’s role could then focus more on quality control and

ritical evaluation of the information extracted. In this review paper,

e are particularly interested in the progress of these NLP techniques

https://pubmed.ncbi.nlm.nih.gov/
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Fig. 1. Common NLP tasks, applied to a biological example. PoS: Part-of-Speech tagging, NER: Named Entity Recognition, RelEx: Relation extraction, adj: adjective, 

adp: adposition, CID: chemical ID, HP: Human Phenotype Ontology term. 
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ertinent to extracting information from written text, and specifically

he progress of neural networks. 

NLP can be broken down into several tasks following each other.

irst, the text of interest is broken into words according to a set of

ules depending on the language (grammar, punctuation, etc.) as well

s the topic discussed (abbreviations). This first step is called tokeniza-

ion [21] . Secondly, Part-of-Speech (PoS) tagging maps each word of

 sentence to its grammatical function, e.g., noun, verb, adjective, etc.

rom there, dependency parsing allows to determine the semantic re-

ationships between words, which can potentially lead to discovering

elationships between them. So-called “higher level ” tasks also build on

hese preliminary steps [22] . We show an example of some of these tasks

pplied to a sentence in a biological context in Fig. 1 . We see in partic-

lar three tasks of interest for information extraction for AOP building:

1 Named Entity Recognition (NER) to recognize concepts such as MIE,

KEor AO. 

2 Relation Extraction to support KERs: causal relationships feed the

WoE. 

3 Entity linking assigns a unique identifier to a given (group of)

word(s). The advantage is two-fold: disambiguating the word as well

as allowing further relations to e.g. existing databases. In Fig. 1 , val-

proic acid is for example linked to its PubChem chemical identifier

(CID) [23] . This identifier not only allows the reader to associate

the term “valproic acid ” with its structure but also to identify syn-

onyms (e.g., “valproate ” here) with the same PubChem CID. The

information obtained on valproate and valproic acid is then linked

as pertaining to the same chemical. 

Most NLP tasks can be described as a classification task: assigning a

abel x to an input text. For example, NER maps a (group of) word(s)

 “valproic acid ”) to a concept ( “chemical ”) ( Fig. 1 ). Language process-

ng can further be viewed as a sequence modeling problem: in order to

nderstand a specific part or word of the sentence, we need to be aware

f what comes before and after it. For example, the word “expression ”

an refer among others to a mathematical formula (the expression of

he area of a rectangle), the process of translating the information con-

ained in a gene (gene expression) or the emotion conveyed on one’s

ace (facial expression). However, in isolation, it is almost impossible

o distinguish which of these meanings the author wants to convey: the

ontext is therefore key to disambiguate. In that regard, some signifi-

ant progress came from the application of neural networks to language

odeling, 
3 
A neural network (sometimes also called deep learning) is a type of

achine learning architecture built by analogy to the biological concept

f a network of neurons. In a neural network, a number of neurons, also

alled nodes, are densely connected in layers. Each neuron receives a

ignal from its environment. This environment can be other neurons or

nput data, and different sources from the environment can have dif-

erent weights. All the input a given neuron receives is combined via

 mathematical transformation. If the combined input is higher than

he activation threshold of the neuron, an output is transmitted to the

ext layer of neurons [24] . The combinatorial possibilities are diverse

n terms of number of neurons, number of layers, connection between

eurons, etc., and define different architectures [25] . These various ar-

hitectures can learn complex, non-linear functions mapping an input

ata (e.g., a sequence of words) to an output of interest (e.g., identifi-

ation of “expression of gene X ” as a KE). 

As mentioned previously, the input to any machine learning model is

umerical. This means that for text analysis, the first step is to translate

ords into numbers. One of the major innovations for NLP has been the

apping of words to vectors representing their semantic and contextual

imilarity [26] . In other terms, words representing concepts that have a

imilar meaning or are often used together will have similar encodings.

hese word vectors are usually learned using deep learning on corpora

omprising millions of texts such as Common Crawl, a large corpus of

everal millions of news articles [27] . 

Word vectors can then be fed into neural networks architecture op-

imized for sequence modeling, in particular Convolutional Neural Net-

orks (CNN) and Long Short-Term Memory networks (LSTM). CNNs,

raditionally used in computer vision, have a particular element of ar-

hitecture named the convolutional layer. This layer allows to extract

eatures gathering input at different positions of a vector. In other words,

his allows to consider “sliding windows ” of words across a sentence

28] . On the other hand, LSTMs incorporate a layer allowing to access

revious states, in other terms, to remember words coming previously in

 sentence. In addition, they include a possibility to forget part of what

as already been seen [29] . These advances in neural network architec-

ures improved language models by capturing longer term dependencies

nd improving sequence modeling of text. 

However, these models are still built as a pipeline of models trained

nd applied one after the other. There is value in sharing information

etween one task and the next. Information used for PoS tagging, for

xample, can be equally useful for dependency parsing as they are both

elying on grammatical properties. More recently, a new architecture for
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anguage models has emerged: the Transformer [30] . Transformer mod-

ls comprise an attention mechanism, which accounts for the relation-

hips and dependencies between all the words in a sentence, no matter

heir distance to each other. It assigns differential weights to all words

n relation with individual words, allowing to indicate which words are

ssential for the interpretation of others by giving them a higher weight.

he difference with the word vectors concept we presented above is that

ord vectors are trained on a general corpus. Here, weights are different

n each sentence according to the context. This means that the context

f a word can be re-used for each task, instead of being learnt multiple

imes. Transformers have shown very good performance on translation

asks in this founding paper, so it is very likely they will outperform

raditional architectures on other NLP tasks as well. 

A lot of progress has been made in the NLP field. We will now review

ow much of this progress has been applied to the field of toxicology. 

.2. Current NLP use in the biomedical and toxicology fields 

There have been a number of (collective) efforts on the development

f language models and applications for the biomedical field in the last

en years [ 31 , 32 ]. Pletscher-Frankild et al. [33] have developed a system

o extract gene-disease associations from literature, based on dictionary

apping and co-occurrence. LimTox [34] is a full pipeline and web ap-

lication designed to retrieve scientific text and extract associations be-

ween compounds and toxicological endpoints, focused on hepatotoxic-

ty. However, it is very specifically focused on the extraction of relations

etween biochemical markers and cytochromes and does not extend to

ther molecular interactions nor to relations between molecular events

nd higher level events such as organ or organism-level events. It is also

ery much rule and pattern-based and does not seem to take full advan-

age of the promises of NLP for scientific text. 

More recently, Minet et al. [35] built ad-hoc gene sets from the mu-

us hypersecretion AOP developed by Luettich et al. [36] . Publications

elated to each KE from this AOP were gathered from PubMed, and a

ist of “seed ” genes per KE were extracted manually from this primary

orpus. These formed the basis for an extended search which associated

hese genes with AOP-associated terms such as “smoke ” or “tobacco. ”

urther genes were extracted by NER, and co-occurrence between each

air of genes across the corpus was calculated. After manual curation,

he gene set for each KE could be used in gene expression assays to

iscriminate e.g. samples exposed to cigarette smoke. This work is an

xample of how NLP can also support the development of new in vitro

ests to evaluate toxicologically relevant endpoints as well as identify

aps in data. 

Jornod et al. [37] have taken NLP one step closer to AOP devel-

pment by building AOP-helpFinder, a web platform to find existing

iterature connecting stressors and biological events. This platform is

ased on the input of existing AOP elements such as MIE/KE/AO. The

latform then searches for these elements in the text of existing publi-

ations. This search is based on the matching of (a simplified version

f the) words comprising the MIE/KE/AO of interest in the text, and

alculating a score based on the shortest path between these words. In

ther words, the closer these terms are in the text, the more likely it is

hat the tool has correctly identified an event [38] . To the best of our

nowledge, this tool identifies events and determines whether they are

elated by looking if they are co-occurring in text, but is not making

se of semantic information to determine causal relationships between

vents. In addition, this approach seems to mostly be valuable for the

xtraction of knowledge about already established events, as the user

eeds to input MIE/KE/AO from AOPWiki or other sources. Therefore,

hile the tool has established value to uncover new evidence for KERs

etween existing events [39] , the discovery of new events, in particular

IEs or KEs, seems somewhat more restricted. 

All these are interesting applications but do not necessarily take ad-

antage of the recent technical progress in NLP. These recent advances

ave been mostly implemented in the field of pharmacovigilance. Weis-
4 
enbacher et al. [40] have used deep neural networks, notably LSTMs,

o find mentions of medications in tweets. This could be used further

o detect those associated with mentions of adverse effects or toxicities.

ang et al. [41] have used a Transformer-based model on case reports

rom the FDA Adverse Event Reporting System to predict causal rela-

ionships between analgesics treatment and liver failure as well as be-

ween Tramadol intake and mortality. They report a better performance,

nd in particular identify more causal factors, than the traditional sig-

al detection methods. This is very valuable, and is getting closer to

arvesting the power of NLP for NAMs. However, it is still targeting a

estricted part of toxicology by directly linking compounds and Adverse

utcomes without exploring intermediate mechanistic steps. 

From these examples, it is clear that some NLP tasks and architec-

ures have been applied in the biomedical and in particular in the toxi-

ology domain for knowledge extraction, and some more advanced tech-

iques for related domains. We think the recent technical progress in

LP can be used further for several aspects of AOPs and NAMs develop-

ent, and propose our approach in the following section. 

. Future of Natural Language Processing in the toxicology field 

.1. Opportunities of NLP for toxicology 

We have seen the value that NLP can bring to extract information for

oxicological purposes. In Fig. 2 , we show the different ways NLP can

elp NAMs development, with a focus on the AOP framework. 

First, connecting chemicals to molecular, cellular, organ or

rganism-level events can enrich approaches such as RASAR with bi-

logical information in addition to the purely physico-chemical param-

ters already used. The automatic acquisition and addition of that in-

ormation will then support a more accurate and fine-grained chemical

election. In addition, it can direct toxicological assessment to AOP net-

ork areas expected to be triggered by the compound(s), or even to

rioritize compounds to be tested, by selecting compounds presenting

xisting evidence of triggering an AO of interest to test first. 

Second, we envision NLP as a support tool for BH criteria. We sug-

est it can help gather weight of evidence about KERs and support their

iological plausibility. For example, highlighting causal relationships

etween upstream (molecular) key events and downstream (cellular)

ey events will considerably facilitate the review process by AOP devel-

pers. The automation of literature search will also highlight data gaps

ore efficiently than manual review, which could be filled in by the

evelopment of new testing methods (NAMs) as evidenced earlier [35] .

Finally, we see NLP as an additional tool to evaluate conservation

etween species. By extracting biological events and linking them to

ormally organized concepts such as e.g. ontology terms from the Mam-

alian Phenotype Ontology [42] , we can derive what is conserved in

umans from other species for which data exists. 

.2. Enacting NLP for toxicology 

We described above how we believe NLP can support the toxicol-

gy field. Practically, we suggest a workflow for information extraction,

hown in Fig. 3 . 

The first step is a programmatic query of the relevant literature with

ell-defined keywords. This can either be a search related to toxic ef-

ects of selected chemicals (top-down) or to an AO of interest (bottom-

p). As this automatic search will produce an excessive number of re-

ults, a curation step is needed. This can be supported by NLP, for ex-

mple by using NER to recognize biological entities of interest in the

ext. From then on, the text from selected papers can be processed with

he steps we described earlier in Fig. 1 . This automatic extraction of

nformation from potentially hundreds or thousands of articles will in

ur opinion contribute to a more efficient gathering of evidence than

anual reviews. This step can and should also comprise some manual
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Fig. 2. NLP support for AOPs. Here we give an example on how NLP can support the development of AOP with the example of AOP 18 in AOPWiki, PPARalpha 

activation in utero leading to impaired fertility in males [ 46 ]. The example sentences we are giving are meant for illustration and not extracted from any specific 

article. It should also be noted that we provide one example for each KER, but a lot more would be needed to strengthen and give confidence in the WoE. In addition, 

by gathering evidence on mechanistic relations between key events that can be present in multiple species, NLP can facilitate the transfer of knowledge between 

animal models, as well as predict its relevance for human health. MIE: Molecular Initiating Event, KE: Key Event, KER: Key Event Relationship, AO: Adverse Outcome, 

WoE: Weight of Evidence, NER: Named Entity Recognition, RelEx: Relation Extraction. 

Fig. 3. NLP workflow to support gathering of toxicological insights. We give an example of Pubmed query and the number of articles yielded, and how this could 

be reduced to relevant information (numbers given in the second and third steps of the workflow are theoretical and meant to show how the filtering can be helped 

by NLP). Example sentences can be found in Fig. 2 . This data could then be used for multiple use cases: evaluation of conservation of mechanisms between species, 

weight of evidence for the establishment of (quantitative) AOPs, or data enrichment for chemical selection process. 
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nspection from the AOP developer to ensure the models are providing

orrect information. 

All the information is gathered quickly and can be stored immedi-

tely in machine-readable format. We envision storing information into

raph databases, which would allow easy visualization of relationships

nd their WoE, for example to support biological plausibility of KERs as

xemplified in Fig. 2 . It can also be further processed to support NAMs

s described in Fig. 2 . For example, it can be used as input for similarity

pproaches to help in chemical screening: chemicals that trigger similar

vents according to literature could be grouped together. 

We believe that this workflow is flexible enough to help the discovery

f novel events as well as feed the WoE for KERs within existing AOPs.

t can also facilitate combining AOPs into AOP networks. 

We see this approach as possibly limited by two factors: the availabil-

ty of publications in open-science format, as well as the bias for positive

esults in publications. However, these biases would be similar with a

on-automated scheme. We strongly believe that this workflow will be

ore efficient than a manual approach by accelerating review as well

s allowing the evaluation of gaps in currently available knowledge. 

. Conclusion 

We show here that animal testing-based toxicology can gain from the

ntroduction of new machine learning techniques, in particular NLP, to

ake better use of the information available in scientific literature. NLP

an help describe AOPs, and thereby support the selection of KEs that

hould be tested in NAMs, driving the selection and novel development

f NAMs and paving the way for human-based animal-free chemical

azard and risk assessment. 

The workflow we presented here can also be applied to other ar-

as of biomedicine and even Life Sciences in general. We propose that

henever information extraction from an existing body of literature is

equired, NLP could be applied in this fashion to improve the knowledge

athering process. 
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