Magnon-polaron and spin-polaron signatures in the specific heat and electrical resistivity of La0.6Y0.1Ca0.3MnO3 in zero magnetic field and the effect of Mn - O - Mn bond environment
[en] La0.6Y0.1Ca0.3MnO3, an ABO(3) perovskite manganite oxide, exhibits a nontrivial behavior in the vicinity of the sharp peak found in the resistivity rho as a function of temperature T in zero magnetic field. The various features seen on drho/dT are discussed in terms of competing phase transitions. They are related to the Mn-O-Mn bond environment depending on the content of the A crystallographic site. A Ginzburg-Landau type theory is presented for incorporating concurrent phase transitions. The specific heat C of such a compound is also examined from 50 to 200 K. A log-log analysis indicates different regimes. In the low temperature conducting ferromagnetic phase, a collective magnon signature (Csimilar or equal toT(3/2)) is found as for what are called magnon-polaron excitations. A Csimilar or equal toT(2/3) law is found at high temperature and discussed in terms of the fractal dimension of the conducting network of the weakly conducting (so-called insulating) phase and an Orbach estimate of the excitation spectral behaviors. The need of considering both independent spin scattering and collective spin scattering is thus emphasized. The report indicates a remarkable agreement for the Fisher-Langer formula, i.e., Csimilar todrho/dT at second order phase transitions. Within the Attfield model, we find an inverse square root relationship between the critical temperature(s) and the total local Mn-O-Mn strain.
Disciplines :
Physics
Author, co-author :
Ausloos, Marcel ; Université de Liège - ULiège > Département de physique > Physique statistique appliquée et des matériaux
Hubert, L.
Dorbolo, Stéphane ; Université de Liège - ULiège > Département de physique > Physique statistique
Magnon-polaron and spin-polaron signatures in the specific heat and electrical resistivity of La0.6Y0.1Ca0.3MnO3 in zero magnetic field and the effect of Mn - O - Mn bond environment
Publication date :
01 November 2002
Journal title :
Physical Review. B, Condensed Matter and Materials Physics
ISSN :
1098-0121
eISSN :
1550-235X
Publisher :
American Physical Soc, College Pk, United States - Maryland
For a detailed discussion and extensive references, see Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, edited by C. N. R. Rao and B. Raveau (World Scientific, Singapore, 1988); J. M. D. Coey, M. Viret, and S. Von Molnar, Adv. Phys. 48, 167 (1999).
For a detailed discussion and extensive references, see Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, edited by C. N. R. Rao and B. Raveau (World Scientific, Singapore, 1988); J. M. D. Coey, M. Viret, and S. Von Molnar, Adv. Phys. 48, 167 (1999).
A.P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
S. Jin, H.M. O'Bryan, T.H. Tiefel, M. McCormack, and W.W. Rhodes, Appl. Phys. Lett. 66, 382 (1995).
H.L. Ju, C. Kwon, Qi Li, R.L. Greene, and T. Venkatesan, Appl. Phys. Lett. 65, 2108 (1994).
P. Schiffer, A.P. Ramirez, W. Bao, and S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995).
P.G. Radaelli, D.E. Cox, M. Marezio, S.-W. Cheong, P. Schiffer, and A.P. Ramirez, Phys. Rev. Lett. 75, 4488 (1995).
J. Barrat, M.R. Lees, G. Balakrishnan, and D. McPaul, Appl. Phys. Lett. 68, 424 (1996).
J. Fontcuberta, M. Martinez, A. Seffar, S. Pinol, J.L. Garcia- Munoz, and X. Obradors, Phys. Rev. Lett. 76, 1122 (1996).
J.L. Garcia-Munoz, M. Suaaidi, J. Fontcuberta, and J. Rodriguez-Carvajal, Phys. Rev. B 55, 34 (1997).
J. Fontcuberta, V. Laukhin, and X. Obradors, Appl. Phys. Lett. 72, 2607 (1998).
J. Fontcuberta, LI. Balcells, B. Martinez, and X. Obradors, in Nanocrystalline and Thin Film Magnetic Oxides, Vol. 72 of NATO Advanced Study Institute, Series 3, edited by I. Nedkov and M. Ausloos (Kluwer, Dordrecht, 1999), pp. 105-118.
Qi Li and H.S. Wang, in Nanocrystalline and Thin Film Magnetic Oxides (Ref. 11), pp. 133-144.
A.J. Millis, P.B. Littlewood, and B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995); 77, 175 (1996).
A.J. Millis, P.B. Littlewood, and B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995); 77, 175 (1996).
H. Roder, J. Zang, and A.R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
W.E. Pickett and D.J. Singh, Phys. Rev. B 53, 1146 (1996).
L. Sheng, D.Y. Xing, D.N. Sheng, and C.S. Ting, Phys. Rev. Lett. 79, 1710 (1997).
C.M. Varma, Phys. Rev. B 54, 7328 (1996).
Z.B. Guo, Y.W. Du, J.S. Zhu, H. Huang, W.P. Ding, and D. Feng, Phys. Rev. Lett. 78, 1142 (1997).
S. Sergeenkov, H. Bougrine, M. Ausloos, and A. Gilabert, Pis'ma Zh. Éksp. Teor. Fiz. 70, 136 (1999) [JETP Lett. 70, 141 (1999)].
S. Sergeenkov, H. Bougrine, M. Ausloos, and A. Gilabert, Phys. Rev. B 60, 12 322 (1999).
N. Vandewalle, M. Ausloos, and R. Cloots, Phys. Rev. B 59, 11 909 (1999).
H. Huhtinen, R. Laiho, K. G. Lisunov, V. N. Stamov, and V. S. Zakhvalinskii, J. Magn. Magn. Mater. 238, 160 (2002).
B. Vertruyen, R. Cloots, A. Rulmont, G. Dhalenne, M. Ausloos, and Ph. Vanderbemden, J. Appl. Phys. 90, 5692 (2001).
M. Castro, R. Burriel, and S.W. Cheong, J. Magn. Magn. Mater. 196-197, 512 (1999).
T. Okuda, Y. Tomioka, A. Asamitsu, and Y. Tokura, Phys. Rev. B 61, 8009 (2000).
J. E. Gordon, C. Marcenat, J. P. Franck, I. Isaac, Guanwen Zhang, R. Lortz, C. Meingast, F. Bouquet, R. A. Fisher, and N. E. Phillips, Phys. Rev. B 65, 024441 (2001).
A.L. Cornelius, B. Light, J.J. Neumeier, http://arXiv.org/abs/ cond-mat/0108239 (unpublished).
N. F. Mott, Proc. R. Soc. London, Ser. A 153, 699 (1936); 156, 368 (1936).
N. F. Mott, Proc. R. Soc. London, Ser. A 153, 699 (1936); 156, 368 (1936).
T. Van Peski-Timbergen and A.J. Dekker, Physica (Amsterdam) 29, 917 (1963).
P.G. De Gennes and J. Friedel, J. Phys. Chem. Solids 4, 71 (1958).