Colon cancer; Gastrointestinal digestion; Microbial dysbiosis; Quinoa protein hydrolysate; Short chain fatty acids; Azoxymethane; Dextran Sulfate; Peptides; Animals; Mice; Azoxymethane/adverse effects; Peptides/pharmacology; Disease Models, Animal; Mice, Inbred C57BL; Colorectal Neoplasms/chemically induced; Colorectal Neoplasms/drug therapy; Colorectal Neoplasms/metabolism; Chenopodium quinoa; Gastrointestinal Microbiome; Probiotics; Colitis/chemically induced; Dextran sulfate sodium; Gut microbiota; Protein hydrolysate; Quinoa proteins; Short chain fatty acid; Shorter chains; Colitis; Colorectal Neoplasms; Analytical Chemistry; Food Science; General Medicine
Abstract :
[en] Quinoa protein hydrolysate has been previously reported to exert anti-cancer effects in cultured colon cancer cells. Here, we investigated the effect of quinoa protein and its hydrolysate on an azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mouse model of colorectal cancer (CRC) and examined its underlying mechanism using gut microbiota analysis and short chain fatty acids (SCFAs) production analysis. Our results showed that quinoa protein or its hydrolysate mitigated the clinical symptoms of CRC and increased SCFAs contents in colon tissues. Moreover, administration of quinoa protein or its hydrolysate partially alleviated gut microbiota dysbiosis in CRC mice by decreasing the abundance of pathogenic bacteria and increasing the abundance of probiotics. Additionally, PICRUSt analysis revealed that the functional profile of gut microbiota in the quinoa protein treated groups was more similar to that of the control group. These findings indicated that the modulation of gut microbiota by quinoa protein diet intervention may ameliorate AOM/DSS-induced CRC.
Disciplines :
Food science
Author, co-author :
Fan, Xin ; Université de Liège - ULiège > TERRA Research Centre
Guo, Huimin; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China, Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
Teng, Cong; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Yang, Xiushi; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Qin, Peiyou; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Richel, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Smart Technologies for Food and Biobased Products (SMARTECH)
Zhang, Lizhen; School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China. Electronic address: lizhen@sxu.edu.cn
Blecker, Christophe ; Université de Liège - ULiège > TERRA Research Centre > Smart Technologies for Food and Biobased Products (SMARTECH)
Ren, Guixing; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China, School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China. Electronic address: renguixing@caas.cn
Language :
English
Title :
Supplementation of quinoa peptides alleviates colorectal cancer and restores gut microbiota in AOM/DSS-treated mice.
The Agricultural Science and Technology Innovation Program
Funders :
CAAS - Chinese Academy of Agricultural Sciences
Funding text :
This work was supported by grants from the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (Grant No. CAAS-ASTIP-2017-ICS) and a postgraduate international exchange grant from the Chinese Academy of Agricultural Sciences .
Akimoto, N., Ugai, T., Zhong, R., Hamada, T., Fujiyoshi, K., Giannakis, M., Ogino, S., Rising incidence of early-onset colorectal cancer - a call to action. Nature Reviews Clinical Oncology 18:4 (2021), 230–243, 10.1038/s41571-020-00445-1.
Aleksandrova, K., Romero-Mosquera, B., Hernandez, V., Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for management and prevention. Nutrients, 9(9), 2017, 10.3390/nu9090962.
Alrafas, H.R., Busbee, P.B., Chitrala, K.N., Nagarkatti, M., Nagarkatti, P., Alterations in the gut microbiome and suppression of histone deacetylases by resveratrol are associated with attenuation of colonic inflammation and protection against colorectal cancer. Journal of Clinical Medicine, 9(6), 2020, 10.3390/jcm9061796.
Aluko, R.E., Monu, E., Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science 68:4 (2003), 1254–1258, 10.1111/j.1365-2621.2003.tb09635.x.
Bates, S.E., Reinventing cancer cell metabolism. Clinical Cancer Research, 18(20), 2012, 5536, 10.1158/1078-0432.Ccr-12-2884.
Bergman, E.N., Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews 70:2 (1990), 567–590, 10.1152/physrev.1990.70.2.567.
Cai, X.K., Han, Y.H., Gu, M., Song, M.Y., Wu, X., Li, Z.Z., Xiao, H., Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food & Function 10:10 (2019), 6331–6341, 10.1039/c9fo01537j.
Dia, V.P., Gonzalez de Mejia, E., Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Molecular Nutrition & Food Research 55:4 (2011), 623–634, 10.1002/mnfr.201000419.
Dia, V.P., Mejia, E.G., Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Letters 295:1 (2010), 44–53, 10.1016/j.canlet.2010.02.010.
Encarnacao, J.C., Abrantes, A.M., Pires, A.S., Botelho, M.F., Revisit dietary fiber on colorectal cancer: Butyrate and its role on prevention and treatment. Cancer and Metastasis Reviews 34:3 (2015), 465–478, 10.1007/s10555-015-9578-9.
Fahmy, C. A., Gamal-Eldeen, A. M., El-Hussieny, E. A., Raafat, B. M., Mehanna, N. S., Talaat, R. M., & Shaaban, M. T. (2019). Bifidobacterium longum Suppresses Murine Colorectal Cancer through the Modulation of oncomiRs and Tumor Suppressor miRNAs. Nutrition and Cancer-an International Journal, 71 (4), 688-700 10.1080/01635581.2019.1577984.
Fan, X., Guo, H.M., Teng, C., Zhang, B., Blecker, C., Ren, G.X., Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in caco-2 cells. Foods, 11(2), 2022, 10.3390/foods11020194.
Feng, W. W., Liu, J., Tan, Y. Z., Ao, H., Wang, J., & Peng, C. (2020). Polysaccharides from Atractylodes macrocephala Koidz. Ameliorate ulcerative colitis via extensive modification of gut microbiota and host metabolism. Food Research International, 138 10.1016/j.foodres.2020.109777.
Guo, H.M., Hao, Y.Q., Fan, X., Richel, A., Everaert, N., Yang, X.S., Ren, G.X., Administration with quinoa protein reduces the blood pressure in spontaneously hypertensive rats and modifies the fecal microbiota. Nutrients, 13(7), 2021, 10.3390/nu13072446.
Hager, J., Bang, H., Hagen, M., Frech, M., Trager, P., Sokolova, M.V., Zaiss, M.M., The role of dietary fiber in rheumatoid arthritis patients: A feasibility study. Nutrients, 11(10), 2019, 10.3390/nu11102392.
He, R., Han, C., Li, Y., Qian, W., Hou, X., Cancer-preventive role of bone marrow-derived mesenchymal stem cells on colitis-associated colorectal cancer: roles of gut microbiota involved. Frontiers in Cell and Development Biology, 9, 2021, 642948, 10.3389/fcell.2021.642948.
Islami, F., Sauer, A.G., Miller, K.D., Siegel, R.L., Fedewa, S.A., Jacobs, E.J., Jemal, A., Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. Ca-a Cancer Journal for Clinicians 68:1 (2018), 31–54, 10.3322/caac.21440.
Jairath, V., Jeyarajah, J., Zou, G.Y., Parker, C.E., Olson, A., Khanna, R., Feagan, B.G., A composite disease activity index for early drug development in ulcerative colitis: Development and validation of the UC-100 score. Lancet Gastroenterology & Hepatology 4:1 (2019), 63–70, 10.1016/S2468-1253(18)30306-6.
Keum, N., Giovannucci, E., Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nature Reviews Gastroenterology & Hepatology 16:12 (2019), 713–732, 10.1038/s41575-019-0189-8.
Li, X.T., Liu, Y.L., Wang, Y., Li, X., Liu, X.R., Guo, M.R., Jiang, M.S., Sucralose promotes colitis-associated colorectal cancer risk in a murine model along with changes in microbiota. Frontiers in Oncology, 10, 2020, 10.3389/fonc.2020.00710.
Liu, X. M., Mao, B. Y., Gu, J. Y., Wu, J. Y., Cui, S. M., Wang, G., Zhao, J. X., Zhang, H., & Chen, W. (2021). Blautia-a new functional genus with potential probiotic properties? Gut Microbes, 13 (1) 10.1080/19490976.2021.1875796.
Maslowski, K.M., Vieira, A.T., Ng, A., Kranich, J., Sierro, F., Yu, D., Mackay, C.R., Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:7268 (2009), 1282–U1119, 10.1038/nature08530.
Montales, M.T., Simmen, R.C., Ferreira, E.S., Neves, V.A., Simmen, F.A., Metformin and soybean-derived bioactive molecules attenuate the expansion of stem cell-like epithelial subpopulation and confer apoptotic sensitivity in human colon cancer cells. Genes & Nutrition, 10(6), 2015, 49, 10.1007/s12263-015-0499-6.
Montserrat-de la Paz, S., Martinez-Lopez, A., Villanueva-Lazo, A., Pedroche, J., Millan, F., Millan-Linares, M.C., Identification and characterization of novel antioxidant protein hydrolysates from Kiwicha (Amaranthus caudatus L.). Antioxidants, 10(5), 2021, 10.3390/antiox10050645.
Nongonierma, A.B., Le Maux, S., Dubrulle, C., Barre, C., FitzGerald, R.J., Quinoa (Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties. Journal of Cereal Science 65 (2015), 112–118, 10.1016/j.jcs.2015.07.004.
Piawah, S., Venook, A.P., Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer 125:23 (2019), 4139–4147, 10.1002/cncr.32163.
Reza, M.N., Ferdous, N., Emon, M.T.H., Islam, M.S., Mohiuddin, A.K.M., Hossain, M.U., Pathogenic genetic variants from highly connected cancer susceptibility genes confer the loss of structural stability. Scientific Reports, 11(1), 2021, 10.1038/s41598-021-98547-y.
Sah, B.N.P., Vasiljevic, T., McKechnie, S., Donkor, O.N., Identification of Anticancer Peptides from Bovine Milk Proteins and Their Potential Roles in Management of Cancer: A Critical Review. Comprehensive Reviews in Food Science and Food Safety 14:2 (2015), 123–138, 10.1111/1541-4337.12126.
Sanders, M.E., Merenstein, D.J., Reid, G., Gibson, G.R., Rastall, R.A., Probiotics and prebiotics in intestinal health and disease: From biology to the clinic (vol 16, pg 605, 2019). Nature Reviews Gastroenterology & Hepatology, 16(10), 2019, 642, 10.1038/s41575-019-0199-6.
Saus, E., Iraola-Guzman, S., Willis, J.R., Brunet-Vega, A., Gabaldon, T., Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Molecular Aspects of Medicine 69 (2019), 93–106, 10.1016/j.mam.2019.05.001.
Siegel, R.L., Miller, K.D., Jemal, A., Cancer statistics, 2019. CA: a Cancer Journal for Clinicians 69:1 (2019), 7–34, 10.3322/caac.21551.
Singh, H., Miyamoto, S., Darshi, M., Torralba, M.G., Kwon, K., Sharma, K., Pieper, R., Gut microbial changes in diabetic db/db mice and recovery of microbial diversity upon pirfenidone treatment. Microorganisms, 8(9), 2020, 10.3390/microorganisms8091347.
Song, M., Chan, A.T., Environmental factors, gut microbiota, and colorectal cancer prevention. Clinical Gastroenterology and Hepatology 17:2 (2019), 275–289, 10.1016/j.cgh.2018.07.012.
Vaughn, B.P., Kaiser, T., Staley, C., Hamilton, M.J., Reich, J., Graiziger, C., Khoruts, A., A pilot study of fecal bile acid and microbiota profiles in inflammatory bowel disease and primary sclerosing cholangitis. Clinical and Experimental Gastroenterology 12 (2019), 9–19, 10.2147/Ceg.S186097.
Vilcacundo, R., Miralles, B., Carrillo, W., Hernandez-Ledesma, B., In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International 105 (2018), 403–411, 10.1016/j.foodres.2017.11.036.
Vital, D.A.L., de Mejia, E.G., Dia, V.P., Loarca-Pina, G., Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chemistry 157 (2014), 347–355, 10.1016/j.foodchem.2014.02.050.
Vonderheide, R.H., Tumor-promoting inflammatory networks in pancreatic neoplasia: Another reason to Loathe Kras. Cancer Cell 25:5 (2014), 553–554, 10.1016/j.ccr.2014.04.020.
Wan, P., Peng, Y.J., Chen, G.J., Xie, M.H., Dai, Z.Q., Huang, K.Y., Sun, Y., Modulation of gut microbiota by Ilex kudingcha improves dextran sulfate sodium-induced colitis. Food Research International, 126, 2019, 10.1016/j.foodres.2019.108595.
Wang, T.T., Fan, C.G., Yao, A.R., Xu, X.W., Zheng, G.X., You, Y., Lin, X., The adaptor protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity, 49(3), 2018, 504, 10.1016/j.immuni.2018.08.018.
Ward, N.L., Phillips, C.D., Nguyen, D.D., Shanmugam, N.K.N., Song, Y., Hodin, R., Goldstein, A.M., Antibiotic treatment induces long-lasting changes in the fecal microbiota that protect against colitis. Inflammatory Bowel Diseases 22:10 (2016), 2328–2340, 10.1097/Mib.0000000000000914.
Wu, E.Q., Song, J.Z., Pei, L.P., Ling, Y.Q., Comparison of the gut microbiota disturbance in rat models of irritable bowel syndrome induced by maternal separation and multiple early-life adversity. Frontiers in Cellular and Infection Microbiology, 10, 2021, 10.3389/fcimb.2020.581974.
Wu, M.N., Wu, Y.Q., Li, J.M., Bao, Y.H., Guo, Y.C., Yang, W.C., The dynamic changes of gut microbiota in Muc2 deficient mice. International Journal of Molecular Sciences, 19(9), 2018, 10.3390/ijms19092809.
Wu, X., Song, M. Y., Cai, X. K., Neto, C., Tata, A., Han, Y. H., Wang, Q., Tang, Z. H., & Xiao, H. (2018). Chemopreventive Effects of Whole Cranberry (Vaccinium macrocarpon) on Colitis-Associated Colon Tumorigenesis. Molecular Nutrition & Food Research, 62 (24) 10.1002/mnfr.201800942.
Yang, T.W., Lee, W.H., Tu, S.J., Huang, W.C., Chen, H.M., Sun, T.H., Lin, C.C., Enterotype-based analysis of gut microbiota along the conventional adenoma-carcinoma colorectal cancer pathway. Scientific Reports, 9, 2019, 10.1038/s41598-019-45588-z.
Yang, W., Feng, Q.H., Li, M.J., Su, J.Q., Wang, P.Y., Wang, X., Zhao, M.D., Sinomenine suppresses development of hepatocellular carcinoma cells via inhibiting MARCH1 and AMPK/STAT3 signaling pathway. Frontiers in Molecular Biosciences, 8, 2021, 10.3389/fmolb.2021.684262.
Yoo, S.W., Oh, G., Safi, A.M., Hwang, S., Seo, Y.S., Lee, K.H., Chung, E., Endoscopic non-ablative fractional laser therapy in an orthotopic colon tumour model. Scientific Reports, 8, 2018, 10.1038/s41598-018-19792-2.
Zeng, X.J., Jia, H., Zhang, X., Wang, X., Wang, Z.L., Gao, Z.P., Yue, T.L., Supplementation of kefir ameliorates azoxymethane/dextran sulfate sodium induced colorectal cancer by modulating the gut microbiota. Food & Function 12:22 (2021), 11641–11655, 10.1039/d1fo01729b.
Zhao, Y.L., Hu, X.Q., Zuo, X.Y., Wang, M.F., Chemopreventive effects of some popular phytochemicals on human colon cancer: A review. Food & Function 9:9 (2018), 4548–4568, 10.1039/c8fo00850g.
Zhou, Z., Mo, S.B., Gu, R.Q., Dai, W.X., Zou, X.H., Han, L.Y., Cai, G.X., Hematopoietic gene expression regulation through m(6)A methylation predicts prognosis in stage III colorectal cancer. Frontiers in Oncology, 10, 2020, 10.3389/fonc.2020.572708.