[en] Mutations in the gene encoding the RNA/DNA-binding protein Fused in Sarcoma (FUS) have been detected in familial amyotrophic lateral sclerosis (ALS) patients. FUS has been found to be a critical component of the oxidative damage repair complex that might explain its role in neurodegeneration. Here, we examined what impact antioxidant treatment with thiamine (vitamine B1), or its more bioavailable derivative O,S- dibenzoylthiamine (DBT), would have on the hallmarks of pathology in the FUS[1− 359]-transgenic mouse model of ALS. From 8-weeks old, in the pre-symptomatic phase of disease, animals received either thiamine, DBT (200 mg/kg/day), or vehicle for 6 weeks. We examined physiological, behavioral, molecular and histological outcomes, as well as the serum metabolome using nuclear magnetic resonance (NMR). The DBT-treated mice displayed improvements in physiological outcomes, motor function and muscle atrophy compared to vehicle, and the treatment normalized levels of brain glycogen synthase kinase-3β (GSK-3β), GSK-3β mRNA and IL-1β mRNA in the spinal cord. Analysis of the metabolome revealed an increase in the levels of choline and lactate in the vehicle-treated FUS mutants alone, which is also elevated in the cerebrospinal fluid of ALS patients, and reduced glucose and lipoprotein concentrations in the FUS[1− 359]-tg mice, which were not the case in the DBT- treated mutants. The administration of thiamine had little impact on the outcome measures, but it did normalize circulating HDL levels. Thus, our study shows that DBT therapy in FUS mutants is more effective than thiamine and highlights how metabolomics may be used to evaluate therapy in this model.
Research Center/Unit :
GIGA Neurosciences-Neurophysiology - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Probert, Fay
Gorlova, Anna
Deikin, Alexei
Bettendorff, Lucien ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Veniaminova, Ekaterina
Nedorubov, Andrey
Chaprov, Kirill D.
Ivanova, Tamara A.
Anthony, Daniel C.
Strekalova, Tatyana
Language :
English
Title :
In FUS[1−359]‐tg mice O,S-dibenzoyl thiamine reduces muscle atrophy, decreases glycogen synthase kinase 3 beta, and normalizes the metabolome
Bahrami, A., Barreto, G.E., Lombardi, G., Pirro, M., Sahebkar, A., Emerging roles for high-density lipoproteins in neurodegenerative disorders. BioFactors, 2019, 10.1002/biof.1541.
Beers, D.R., Zhao, W., Liao, B., Kano, O., Wang, J., Huang, A., Appel, S.H., Henkel, J.S., Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav. Immun., 2011, 10.1016/j.bbi.2010.12.008.
Bettendorff, L., Lakaye, B., Kohn, G., Wins, P., Thiamine triphosphate: a ubiquitous molecule in search of a physiological role. Metab. Brain Dis., 2014, 10.1007/s11011-014-9509-4.
Bettendorff, L., Wins, P., Biological functions of thiamine derivatives: focus on non-coenzyme roles. OA Biochem, 2013, 1.
Bhargava, P., Anthony, D.C., Metabolomics in multiple sclerosis disease course and progression. Mult. Scler., 2020, 10.1177/1352458519876020.
Botas, A., Campbell, H.M., Han, X., Maletic-Savatic, M., Metabolomics of neurodegenerative diseases. Int. Rev. Neurobiol., 2015, 10.1016/bs.irn.2015.05.006.
Bouet, V., Freret, T., Toutain, J., Divoux, D., Boulourard, M., Schumann-Bard, P., Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp. Neurol., 2007, 10.1016/j.expneurol.2006.09.006.
Bouzat, P., Sala, N., Suys, T., Zerlauth, J.B., Marques-Vidal, P., Feihl, F., Bloch, J., Messerer, M., Levivier, M., Meuli, R., Magistretti, P.J., Oddo, M., Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med., 2014, 10.1007/s00134-013-3203-6.
Chen, L., Chen, Y., Zhao, M., Zheng, L., Fan, D., Changes in the concentrations of trimethylamine N-oxide (TMAO) and its precursors in patients with amyotrophic lateral sclerosis. Sci. Rep., 2020, 10.1038/s41598-020-72184-3.
Conlon, E.G., Lu, L., Sharma, A., Yamazaki, T., Tang, T., Shneider, N.A., Manley, J.L., The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS brains. eLife, 2016, 10.7554/eLife.17820.
Crivello, M., Hogg, M.C., Jirström, E., Halang, L., Woods, I., Rayner, M., Coughlan, K.S., Lewandowski, S.A., Prehn, J.H.M., Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model. Dis. Model Mech., 2019, 10.1242/dmm.040238.
de Munter, J., Shafarevich, I., Liundup, A., Pavlov, D., Wolters, E.C., Gorlova, A., Veniaminova, E., Umriukhin, A., Kalueff, A., Svistunov, A., Kramer, B.W., Lesch, K.P., Strekalova, T., Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice. CNS Neurosci. Ther., 2020, 10.1111/cns.13280.
de Munter, J., Babaevskaya, D., Wolters, E.C., Pavlov, D., Lysikova, E., Kalueff, A., Gorlova, A., Oplatchikova, M., Pomytkin, I.A., Proshin, A., Umriukhin, A., Lesch, K.P., Strekalova, T., Molecular and behavioural abnormalities in the FUS-tg mice mimic frontotemporal lobar degeneration: effects of old and new anti-inflammatory therapies. J. Cell. Mol. Med., 2020, 10.1111/jcmm.15628.
Dorninger, F., Moser, A.B., Kou, J., Wiesinger, C., Forss-Petter, S., Gleiss, A., Hinterberger, M., Jungwirth, S., Fischer, P., Berger, J., Alterations in the plasma levels of specific choline phospholipids in Alzheimer's disease mimic accelerated aging. J. Alzheimer'S. Dis., 2018, 10.3233/JAD-171036.
Feringa, F.M., van der Kant, R., Cholesterol and Alzheimer's disease; from risk genes to pathological effects. Front. Aging Neurosci., 2021, 10.3389/fnagi.2021.690372\.
Gaetani, L., Paolini Paoletti, F., Bellomo, G., Mancini, A., Simoni, S., Di Filippo, M., Parnetti, L., CSF and blood biomarkers in neuroinflammatory and neurodegenerative diseases: implications for treatment. Trends Pharmacol. Sci., 2020, 10.1016/j.tips.2020.09.011.
Ghaleiha, A., Davari, H., Jahangard, L., Haghighi, M., Ahmadpanah, M., Seifrabie, M.A., Bajoghli, H., Holsboer-Trachsler, E., Brand, S., Adjuvant thiamine improved standard treatment in patients with major depressive disorder: results from a randomized, double-blind, and placebo-controlled clinical trial. Eur. Arch. Psychiatry Clin. Neurosci., 2016, 10.1007/s00406-016-0685-6.
Gibson, G.E., Luchsinger, J.A., Cirio, R., Chen, H., Franchino-Elder, J., Hirsch, J.A., Bettendorff, L., Chen, Z., Flowers, S.A., Gerber, L.M., Grandville, T., Schupf, N., Xu, H., Stern, Y., Habeck, C., Jordan, B., Fonzetti, P., Benfotiamine and cognitive decline in Alzheimer's disease: results of a randomized placebo-controlled phase IIa clinical trial. J. Alzheimer's. Dis., 2020, 10.3233/JAD-200896.
Głuchowska, K., Pliszka, M., Szablewski, L., Expression of glucose transporters in human neurodegenerative diseases. Biochem. Biophys. Res. Commun., 2021, 10.1016/j.bbrc.2020.12.067.
Gorlova, A., Pavlov, D., Anthony, D.C., Ponomarev, E.D., Sambon, M., Proshin, A., Shafarevich, I., Babaevskaya, D., Lesсh, K.P., Bettendorff, L., Strekalova, T., Thiamine and benfotiamine counteract ultrasound-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice. Neuropharmacology, 2019, 10.1016/j.neuropharm.2019.02.025.
Gray, E., Larkin, J.R., Claridge, T.D., Talbot, K., Sibson, N.R., Turner, M.R., The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener., 2015, 10.3109/21678421.2015.1053490.
Guglielmotto, M., Giliberto, L., Tamagno, E., Tabaton, M., Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors. Front. Aging Neurosci., 2010, 10.3389/neuro.24.003.2010.
Haupt, E., Ledermann, H., Köpcke, W., Benfotiamine in the treatment of diabetic polyneuropathy–a three-week randomized, controlled pilot study (BEDIP study). Int. J. Clin. Pharmacol. Ther., 2005, 10.5414/cpp43071.
He, J., Zhu, G., Wang, G., Zhang, F., Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid. Med Cell Longev., 2020, 10.1155/2020/6137521.
Jia, R., Chen, Q., Zhou, Q., Zhang, R., Jin, J., Hu, F., Liu, X., Qin, X., Kang, L., Zhao, S., Dang, Y., Dang, J., Characteristics of serum metabolites in sporadic amyotrophic lateral sclerosis patients based on gas chromatography-mass spectrometry. Sci. Rep., 2021, 10.1038/s41598-021-00312-8.
Jurynczyk, M., Probert, F., Yeo, T., Tackley, G., Claridge, T., Cavey, A., Woodhall, M.R., Arora, S., Winkler, T., Schiffer, E., Vincent, A., DeLuca, G., Sibson, N.R., Isabel Leite, M., Waters, P., Anthony, D.C., Palace, J., Metabolomics reveals distinct, antibody-independent, molecular signatures of MS, AQP4-antibody and MOG-antibody disease. Acta Neuropathol. Commun., 2017, 10.1186/s40478-017-0495-8.
Komine, O., Yamanaka, K., Neuroinflammation in motor neuron disease. Nagoya J. Med Sci., 2015.
Kumar, A., Bala, L., Kalita, J., Misra, U.K., Singh, R.L., Khetrapal, C.L., Babu, G.N., Metabolomic analysis of serum by (1) H NMR spectroscopy in amyotrophic lateral sclerosis. Clin. Chim. Acta; Int. J. Clin. Chem., 2010, 10.1016/j.cca.2010.01.016.
Lawton, K.A., Brown, M.V., Alexander, D., Li, Z., Wulff, J.E., Lawson, R., Jaffa, M., Milburn, M.V., Ryals, J.A., Bowser, R., Cudkowicz, M.E., Berry, J.D., Northeast, A.L.S.Consortium, Plasma metabolomic biomarker panel to distinguish patients with amyotrophic lateral sclerosis from disease mimics. Amyotroph. Lateral Scler. Front. Degener., 2014, 10.3109/21678421.2014.908311.
Lim, H.K., Hong, S.H., Yoo, H.J., Choi, J.Y., Hoon, S.K., Choi, J., Kang, H.S., Visual MRI grading system to evaluate atrophy of the supraspinatus muscle. Korean J. Radiol., 2014, 10.3348/kjr.2014.15.4.501.
Lôo H., Poirier M.F., Ollat H., Elatki S. (2000). Etude des effets de la sulbutiamine (Arcalion 200) sur l′inhibition psychocomportementale des épisodes dépressifs majeurs [Effects of sulbutiamine (Arcalion 200) on psycho-behavioral inhibition in major depressive episodes]. L′Encephale.
Lopez-Gonzalez, R., Lu, Y., Gendron, T.F., Karydas, A., Tran, H., Yang, D., Petrucelli, L., Miller, B.L., Almeida, S., Gao, F.B., Poly(GR) in C9ORF72-Related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor. Neurons Neuron, 2016, 10.1016/j.neuron.2016.09.015.
Lutz, C., Mouse models of ALS: Past, present and future. Brain Res., 2018, 10.1016/j.brainres.2018.03.024.
Lysikova, E.A., Kukharsky, M.S., Chaprov, K.D., Vasilieva, N.A., Roman, A.Y., Ovchinnikov, R.K., Deykin, A.V., Ninkina, N., Buchman, V.L., Behavioural impairments in mice of a novel FUS transgenic line recapitulate features of frontotemporal lobar degeneration. Genes Brain Behav., 2019, 10.1111/gbb.12607.
Magner, M., Szentiványi, K., Svandová, I., Ješina, P., Tesařová, M., Honzík, T., Zeman, J., Elevated CSF-lactate is a reliable marker of mitochondrial disorders in children even after brief seizures. Eur. J. Paediatr. Neurol., 2011, 10.1016/j.ejpn.2010.10.001.
Markova, N., Bazhenova, N., Anthony, D.C., Vignisse, J., Svistunov, A., Lesch, K.P., Bettendorff, L., Strekalova, T., Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2017, 10.1016/j.pnpbp.2016.11.001.
Masrori, P., Van Damme, P., Amyotrophic lateral sclerosis: a clinical review. Eur. J. Neurol., 2020, 10.1111/ene.14393.
McGarry, A., Gaughan, J., Hackmyer, C., Lovett, J., Khadeer, M., Shaikh, H., Pradhan, B., Ferraro, T.N., Wainer, I.W., Moaddel, R., Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington's disease for participants of varying functional disability: a pilot study. Sci. Rep., 2020, 10.1038/s41598-020-77526-9.
Monteiro, M.S., Carvalho, M., Bastos, M.L., Guedes de Pinho, P., Metabolomics analysis for biomarker discovery: advances and challenges. Curr. Med. Chem., 2013, 10.2174/092986713804806621.
Morello, G., Spampinato, A.G., Cavallaro, S., Neuroinflammation and ALS: transcriptomic insights into molecular disease mechanisms and therapeutic targets. Mediat. Inflamm., 2017, 10.1155/2017/7070469.
Muresan, Z., Muresan, V., Neuritic deposits of amyloid-beta peptide in a subpopulation of central nervous system-derived neuronal cells. Mol. Cell. Biol., 2006, 10.1128/MCB.00371-06.
Ninkina, N., Stem cell therapy and FUS[1-359]-transgenic mice: a recent study highlighting a promising ALS model and a promising therapy. CNS Neurosci. Ther., 2020, 10.1111/cns.13302.
Ostrakhovitch, E.A., Song, E.S., Macedo, J., Gentry, M.S., Quintero, J.E., van Horne, C., Yamasaki, T.R., Analysis of circulating metabolites to differentiate Parkinson's disease and essential tremor. Neurosci. Lett., 2022, 10.1016/j.neulet.2021.136428.
Pan, X., Gong, N., Zhao, J., Yu, Z., Gu, F., Chen, J., Sun, X., Zhao, L., Yu, M., Xu, Z., Dong, W., Qin, Y., Fei, G., Zhong, C., Xu, T.L., Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain: a J. Neurol., 2010.
Pavlov, D., Bettendorff, L., Gorlova, A., Olkhovik, A., Kalueff, A.V., Ponomarev, E.D., Inozemtsev, A., Chekhonin, V., Lesсh, K.P., Anthony, D.C., Strekalova, T., Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2019, 10.1016/j.pnpbp.2018.11.014.
Pavlov, D., Gorlova, A., Bettendorff, L., Kalueff, A.A., Umriukhin, A., Proshin, A., Lysko, A., Landgraf, R., Anthony, D.C., Strekalova, T., Enhanced conditioning of adverse memories in the mouse modified swim test is associated with neuroinflammatory changes - Effects that are susceptible to antidepressants. Neurobiol. Learn. Mem., 2020, 10.1016/j.nlm.2020.107227.
Pavlov, D., Markova, N., Bettendorff, L., Chekhonin, V., Pomytkin, I., Lioudyno, V., Svistunov, A., Ponomarev, E., Lesch, K.P., Strekalova, T., Elucidating the functions of brain GSK3α: Possible synergy with GSK3β upregulation and reversal by antidepressant treatment in a mouse model of depressive-like behaviour. Behav. Brain Res., 2017, 10.1016/j.bbr.2017.08.018.
Philips, T., Robberecht, W., Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol., 2011, 10.1016/S1474-4422(11)70015-1.
R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.
Reitz, C., Tang, M.X., Luchsinger, J., Mayeux, R., Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch. Neurol., 2004, 10.1001/archneur.61.5.705.
Sambon, M., Gorlova, A., Demelenne, A., Alhama-Riba, J., Coumans, B., Lakaye, B., Wins, P., Fillet, M., Anthony, D.C., Strekalova, T., Bettendorff, L., Dibenzoylthiamine Has Powerful Antioxidant and Anti-Inflammatory Properties in Cultured Cells and in Mouse Models of Stress and Neurodegeneration. Biomedicines, 2020, 10.3390/biomedicines8090361.
Sambon, M., Wins, P., Bettendorff, L., Neuroprotective effects of thiamine and precursors with higher bioavailability: focus on benfotiamine and dibenzoylthiamine. Int. J. Mol. Sci., 2021, 10.3390/ijms22115418.
Sevim, S., Kaleağası, H., Taşdelen, B., Sulbutiamine shows promising results in reducing fatigue in patients with multiple sclerosis. Mult. Scler. Relat. Disord., 2017, 10.1016/j.msard.2017.05.010.
Sharma, A., Lyashchenko, A.K., Lu, L., Nasrabady, S.E., Elmaleh, M., Mendelsohn, M., Nemes, A., Tapia, J.C., Mentis, G.Z., Shneider, N.A., ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat. Commun., 2016, 10.1038/ncomms10465.
Shelkovnikova, T.A., Peters, O.M., Deykin, A.V., Connor-Robson, N., Robinson, H., Ustyugov, A.A., Bachurin, S.O., Ermolkevich, T.G., Goldman, I.L., Sadchikova, E.R., Kovrazhkina, E.A., Skvortsova, V.I., Ling, S.C., Da Cruz, S., Parone, P.A., Buchman, V.L., Ninkina, N.N., Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J. Biol. Chem., 2013, 10.1074/jbc.M113.492017.
Shruthi, S., Sumitha, R., Varghese, A.M., Ashok, S., Chandrasekhar Sagar, B.K., Sathyaprabha, T.N., Nalini, A., Kramer, B.W., Raju, T.R., Vijayalakshmi, K., Alladi, P.A., Brain-derived neurotrophic factor facilitates functional recovery from ALS-cerebral spinal fluid-induced neurodegenerative changes in the NSC-34 motor neuron cell line. Neuro-Degener. Dis., 2017, 10.1159/000447559.
Simpson, E.P., Henry, Y.K., Henkel, J.S., Smith, R.G., Appel, S.H., Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology, 2004, 10.1212/wnl.62.10.1758.
Solleiro-Villavicencio, H., Rivas-Arancibia, S., Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+T cells in neurodegenerative diseases. Front Cell Neurosci., 2018, 10.3389/fncel.2018.00114.
Stoica, L., Todeasa, S.H., Cabrera, G.T., Salameh, J.S., ElMallah, M.K., Mueller, C., Brown, R.H. Jr., Sena-Esteves, M., Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model. Ann. Neurol., 2016, 10.1002/ana.24618.
Stracke, H., Gaus, W., Achenbach, U., Federlin, K., Bretzel, R.G., Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc., 2008, 10.1055/s-2008-1065351.
Thévenot, E.A., Roux, A., Xu, Y., Ezan, E., Junot, C., Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res., 2015, 10.1021/acs.jproteome.5b00354.
Thompson, A.G., Talbot, K., Turner, M.R., Higher blood high density lipoprotein and apolipoprotein A1 levels are associated with reduced risk of developing amyotrophic lateral sclerosis. J. Neurol., Neurosurg., Psychiatry, 2022, 10.1136/jnnp-2021-327133.
Vahsen, B.F., Gray, E., Thompson, A.G., Ansorge, O., Anthony, D.C., Cowley, S.A., Talbot, K., Turner, M.R., Non-neuronal cells in amyotrophic lateral sclerosis - from pathogenesis to biomarkers. Nat. Rev. Neurol., 2021, 10.1038/s41582-021-00487-8.
Veniaminova, E., Cespuglio, R., Cheung, C.W., Umriukhin, A., Markova, N., Shevtsova, E., Lesch, K.P., Anthony, D.C., Strekalova, T., Autism-like behaviours and memory deficits result from a western diet in mice. Neural Plast., 2017, 10.1155/2017/9498247.
Vignisse, J., Sambon, M., Gorlova, A., Pavlov, D., Caron, N., Malgrange, B., Shevtsova, E., Svistunov, A., Anthony, D.C., Markova, N., Bazhenova, N., Coumans, B., Lakaye, B., Wins, P., Strekalova, T., Bettendorff, L., Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels. Mol. Cell. Neurosci., 2017, 10.1016/j.mcn.2017.05.005.
Wishart, D.S., Feunang, Y.D., Marcu, A., Guo, A.C., Liang, K., Vázquez-Fresno, R., Sajed, T., Johnson, D., Li, C., Karu, N., Sayeeda, Z., Lo, E., Assempour, N., Berjanskii, M., Singhal, S., Arndt, D., Liang, Y., Badran, H., Grant, J., Serra-Cayuela, A., Liu, Y., Mandal, R., Neveu, V., Pon, A., Knox, C., Wilson, M., Manach, C., Scalbert, A., HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res., 2018, 10.1093/nar/gkx1089.
Yamanaka, K., Chun, S.J., Boillee, S., Fujimori-Tonou, N., Yamashita, H., Gutmann, D.H., Takahashi, R., Misawa, H., Cleveland, D.W., Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci., 2008, 10.1038/nn2047.
Yang, Z., Wang, J., Chen, J., Luo, M., Xie, Q., Rong, Y., Wu, Y., Cao, Z., Liu, Y., High-resolution NMR metabolomics of patients with subjective cognitive decline plus: Perturbations in the metabolism of glucose and branched-chain amino acids. Neurobiol. Dis., 2022, 10.1016/j.nbd.2022.105782.
Yeo, T., Probert, F., Sealey, M., Saldana, L., Geraldes, R., Höeckner, S., Schiffer, E., Claridge, T., Leppert, D., DeLuca, G., Kuhle, J., Palace, J., Anthony, D.C., Objective biomarkers for clinical relapse in multiple sclerosis: a metabolomics approach. Brain Commun., 2021, 10.1093/braincomms/fcab240.
Yeo, T., Sealey, M., Zhou, Y., Saldana, L., Loveless, S., Claridge, T., Robertson, N., DeLuca, G., Palace, J., Anthony, D.C., Probert, F., A blood-based metabolomics test to distinguish relapsing-remitting and secondary progressive multiple sclerosis: addressing practical considerations for clinical application. Sci. Rep., 2020, 10.1038/s41598-020-69119-3.
Zuliani, G., Ble', A., Zanca, R., Munari, M.R., Zurlo, A., Vavalle, C., Atti, A.R., Fellin, R., Lipoprotein profile in older patients with vascular dementia and Alzheimer's disease. BMC Geriatr., 2001, 10.1186/1471-2318-1-5.