[en] This work develops a unified modeling framework for piezoelectric structures controlled by passive shunts connected to a single transducer and/or networks interconnecting multiple transducers. A common tuning procedure for these different control approaches, termed decentralized and centralized approaches, respectively, is proposed. The generic model is then used to compare them in terms of vibration mitigation performance. It is shown that decentralization can be detrimental to performance in general. Digital vibration absorbers are then leveraged to realize the shunts and/or networks. In this regard, the proposed tuning procedure solely relies on characteristics that can be identified from the digital units of these absorbers. The theoretical developments are numerically and experimentally validated on piezoelectric beams.
SPW - Service Public de Wallonie F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding number :
WALInnov Grant 1610122
Funding text :
Ghislain Raze is a Postdoctoral Researcher of the Fonds de la Recherche Scientifique—FNRS which is gratefully acknowledged. The authors would also like to acknowledge the financial support of the SPW (WALInnov Grant 1610122).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Forward R L 1979 Appl. Opt. 18 690 10.1364/AO.18.000690
Hagood N von Flotow A 1991 J. Sound Vib. 146 243 68 243-68 10.1016/0022-460X(91)90762-9
Gripp J Rade D 2018 Mech. Syst. Signal Process. 112 359 83 359-83 10.1016/j.ymssp.2018.04.041
Park C H Inman D J 2003 Shock Vib. 10 127 33 127-33 10.1155/2003/863252
Dekemele K Van Torre P Loccufier M 2020 J. Vib. Control 27 2047 57 2047-57 10.1177/1077546320952612
Fleming A Behrens S Moheimani S 2000 Electron. Lett. 36 1525 10.1049/el:20001083
Lossouarn B Aucejo M Deü J-F Multon B 2017 Sens. Actuators A 259 68 76 68-76 10.1016/j.sna.2017.03.030
Berardengo M Manzoni S Høgsberg J Vanali M 2021 Mech. Syst. Signal Process. 151 107350 10.1016/j.ymssp.2020.107350
Høgsberg J Krenk S 2017 J. Sound Vib. 386 65 81 65-81 10.1016/j.jsv.2016.08.028
Toftekær J F Høgsberg J 2021 J. Sound Vib. 498 115960 10.1016/j.jsv.2021.115960
Moheimani S O R Fleming A J 2006 Piezoelectric Transducers for Vibration Control and Damping (Advances in Industrial Control) London Springer
Raze G Dietrich J Kerschen G 2022 J. Intell. Mater. Syst. Struct. accepted 10.1177/1045389X221088031
Berardengo M Manzoni S Conti A M 2017 J. Sound Vib. 405 287 305 287-305 10.1016/j.jsv.2017.06.002
Dal Bo L He H Gardonio P Li Y Jiang J Z 2022 J. Sound Vib. 520 116554 10.1016/j.jsv.2021.116554
Viana F A C Steffen V Jr 2006 J. Braz. Soc. Mech. Sci. Eng. 28 293 310 293-310 10.1590/S1678-58782006000300007
Toftekær J F Høgsberg J 2020 J. Intell. Mater. Syst. Struct. 31 570 86 570-86 10.1177/1045389X19891646
Giorgio I 2008 Multimode collocated vibration control with multiple piezoelectric transducers PhD Thesis Università degli studi di Roma (available at: https://tel.archives-ouvertes.fr/tel-00798635)
Rosi G 2010 Control of sound radiation and transmission by means of passive piezoelectric networks: modelling, optimization and experimental implementation PhD Thesis Université Pierre et Marie Curie—Paris VI (available at: https://tel.archives-ouvertes.fr/tel-00815038)
Goodwin G C Graebe S F Salgado M E 2001 Control System Design Upper Saddle River, NJ Prentice Hall
Engels W P Baumann O N Elliott S J Fraanje R 2006 J. Acoust. Soc. Am. 119 1487 95 1487-95 10.1121/1.2163270
Alessandroni S Dell’Isola F Porfiri M 2002 Int. J. Solids Struct. 39 5295 324 5295-324 10.1016/S0020-7683(02)00402-X
Lossouarn B Deü J F Aucejo M 2015 Smart Mater. Struct. 24 115037 10.1088/0964-1726/24/11/115037
Lossouarn B Deü J-F Aucejo M Cunefare K A 2016 Smart Mater. Struct. 25 1 15 1-15 10.1088/0964-1726/25/11/115042
Darleux R Lossouarn B Giorgio I Dell’Isola F Deü J-F 2021 Math. Mech. Solids 27 578 601 578-601 10.1177/10812865211027622
Lossouarn B Kerschen G Deü J-F 2021 J. Sound Vib. 511 116323 10.1016/j.jsv.2021.116323
Moheimani S Fleming A Behrens S 2004 IEEE/ASME Trans. Mechatronics 9 87 99 87-99 10.1109/TMECH.2004.823882
Giorgio I Culla A Del Vescovo D 2009 Arch. Appl. Mech. 79 859 79 859-79 10.1007/s00419-008-0258-x
Raze G Dietrich J Lossouarn B Kerschen G 2022 Mech. Syst. Signal Process. 176 109120 10.1016/j.ymssp.2022.109120
Trindade M A Lossouarn B Deü J-F 2021 J. Intell. Mater. Syst. Struct. 32 971 85 971-85 10.1177/1045389X20942847
Thomas O Deü J-F Ducarne J 2009 Int. J. Numer. Methods Eng. 80 235 68 235-68 10.1002/nme.2632
McKelvey T Akcay H Ljung L 1996 IEEE Trans. Autom. Control 41 960 79 960-79 10.1109/9.508900
Juang J-N Pappa R S 1985 J. Guid. Control Dyn. 8 620 7 620-7 10.2514/3.20031
Peeters B Van der Auweraer H Guillaume P Leuridan J 2004 Shock Vib. 11 395 409 395-409 10.1155/2004/523692
Soltani P Kerschen G Tondreau G Deraemaeker A 2014 Smart Mater. Struct. 23 125014 10.1088/0964-1726/23/12/125014
Thomas O Ducarne J Deü J-F 2012 Smart Mater. Struct. 21 015008 10.1088/0964-1726/21/1/015008
Raze G Dietrich J Kerschen G 2021 J. Sound Vib. 515 116490 10.1016/j.jsv.2021.116490
Ikegame T Takagi K Inoue T 2019 J. Vib. Acoust. 141 031015 10.1115/1.4042819
Raze G Dietrich J Kerschen G 2022 J. Intell. Mater. Syst. Struct. 33 2033 48 2033-48 10.1177/1045389X211072269
Swamy K 1973 IEEE Trans. Autom. Control 18 306 306 306-306 10.1109/TAC.1973.1100319
Raze G 2021 Piezoelectric digital vibration absorbers for multimodal vibration mitigation of complex mechanical structures PhD Thesis Université de Liège (available at: http://hdl.handle.net/2268/256608)
Ewins D J 2009 Modal Testing: Theory, Practice and Application New York Wiley
Berardengo M Manzoni S Vanali M 2016 Shock Vib. 2016 1 18 1-18 10.1155/2016/9739217
Maurini C Pouget J Dell’Isola F 2006 Comput. Struct. 84 1438 58 1438-58 10.1016/j.compstruc.2006.01.016
Gannett J Chua L 1978 Frequency domain passivity conditions for linear time-invariant lumped networks Technical Report Technical Report No. UCB/ERL M78/21 Berkeley, CA University of California (available at: www2.eecs.berkeley.edu/Pubs/TechRpts/1978/28925.html)
Ten Berge J M F 1983 Psychometrika 48 519 23 519-23 10.1007/BF02293876
Horowitz P Hill W 2015 The Art of Electronics 3rd edn Cambridge Cambridge University Press
Necasek J Vaclavik J Marton P 2017 Comparison of analog front-ends for digital synthetic impedance device 2017 IEEE Int. Workshop of Electronics, Control, Measurement, Signals and Their Application to Mechatronics (ECMSM) IEEE pp 1 4 pp 1-4
TI 2008 High voltage FET-input operational amplifier (available at: www.ti.com/product/OPA445)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.