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Abstract. This work develops a unified modeling framework for piezoelectric

structures controlled by passive shunts connected to a single transducer and/or

networks interconnecting multiple transducers. A common tuning procedure for

these different control approaches, termed decentralized and centralized approaches,

respectively, is proposed. The generic model is then used to compare them in terms of

vibration mitigation performance. It is shown that decentralization can be detrimental

to performance in general. Digital vibration absorbers are then leveraged to realize the

shunts and/or networks. In this regard, the proposed tuning procedure solely relies

on characteristics that can be identified from the digital units of these absorbers. The

theoretical developments are numerically and experimentally validated on piezoelectric

beams.
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1. Introduction

Since the pioneering works of Forward [1] and Hagood and von Flotow [2], piezoelectric

damping has gained wide interest and has become an active research field [3]. With

this vibration mitigation technique, the ability of piezoelectric transducers to convert

mechanical energy into electrical energy is leveraged to dissipate the latter into circuits

connecting their electrodes, and/or to reuse it to provide a counter action. These

circuits, commonly called shunts, are generally resistive or resonant. Resonant shunts

combine resistive and inductive (RL) elements to enhance energy dissipation via a

resonance of the shunt with the inherent capacitance of the transducer, thereby

resulting in effective vibration mitigation. In practice, resonant shunts are realized

using analog [4, 5] or digital [6] electronics. The use of fully passive inductors

with high inductances was also demonstrated to be possible [7]. Recently, accurate

characterization [8] and calibration [9, 10] techniques were proposed to optimize the

performance of piezoelectric shunts. A number of works also aimed to extend this

approach to the control of multiple structural modes.

When the structure is equipped with a single transducer, a multi-resonant circuit

can be connected to it in order to achieve multimodal damping. An overview of the

different circuits that can be used for this purpose can be found in [11]. A unified

tuning approach for these shunts was proposed in [12], and it was also shown therein

that they are all approximately equal in terms of vibration mitigation performance.

Alternatively, other approaches were proposed to optimize the characteristics of circuits

without prescribing their topologies [13, 14].

Piezoelectric structures may also be endowed with multiple transducers to ensure

substantial coupling with several vibration modes. A straightforward approach to

achieve multimodal damping then consists in shunting each of these transducers

individually with classical RL [15, 16] or multi-resonant [17, 18] shunts. Alternatively, a

multi-terminal electrical network that interconnects the transducers can be designed.

In the control theory terminology, the former and latter approaches are named

decentralized and centralized control, respectively [19, 20]. Networks are traditionally

tuned to be electrical analogs of the structure they are connected to, i.e., they

feature the same resonance frequencies and mode shapes as their host [21]. This

approach has been experimentally validated on academic structures [22, 23] and could

be extended to more complex structures by assembling various analog networks [24]

and to nonlinear structures by using a principle of similarity [25]. Similarly to multi-

resonant shunts, alternate methods were proposed to tune networks of unprescribed

topologies [26, 27, 28].

Comparisons between shunts and networks are rather scarce in the literature.

Giorgio [17] and Rosi [18] highlighted the superior performance of networks over that of

shunts. Trindade et al [29] compared the performance and robustness of RL shunts with

those of a network targeting a single mode. They concluded that the latter tends to be

more robust than the former. However, there does not exist a unified model allowing to
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predict how such approaches can be compared in terms of performance.

In this light, this work aims to provide tools to compare passive centralized and

decentralized piezoelectric damping techniques where one electrical resonant mode

targets one mechanical mode. First, a common modeling framework encompassing all

the aforementioned approaches for multimodal damping is developed. Second, a unified

tuning procedure is proposed. Third, the theoretical developments are exploited to draw

conclusions on the performance of the different strategies. A further objective of this

work is to leverage digital vibration absorbers (DVAs) to develop a model-less tuning

approach allowing for the realization of shunts or networks. Consequently, the tuning

procedure only requires characteristics of the host system that are identifiable from the

DVAs.

This work is organized as follows. Section 2 presents a model of a piezoelectric

structure coupled to a set DVAs emulating a passive network, and introduces the

effect of decentralization. The absorbers’ tuning is addressed in Section 3. The

resulting performance is discussed in Section 4 and numerically illustrated with a free-

free piezoelectric beam. Finally, the theoretical developments are numerically verified

and experimentally validated with a clamped-free piezoelectric beam in Section 5.

2. Dynamics of a piezoelectric structure connected to a set of DVAs

· · ·

· · ·

· · ·

−+ −+ −+ −+

Vp,1q̇p,1

Vin,1Vout,1

Vp,2q̇p,2

Vin,2Vout,2

Vp,3q̇p,3

Vin,3Vout,3

Vp,Npq̇p,Np

Vin,NpVout,Np

Digital unit

Figure 1: Schematic representation of a structure (in gray) with Np piezoelectric

transducers (in orange) connected to a multiport DVA (in white); the red dashed frame

represents the host system as seen by the digital unit.

The DVA was first proposed by Fleming et al [6] as a versatile means to realize

virtually any circuit or network. By measuring the voltages of the transducers, the

currents to be injected back into them are computed by a digital unit in order to mimic

the action of an electrical assembly. Figure 1 schematically represents a multiport DVA

interconnecting multiple transducers.

In this section, the dynamic equations of a structure controlled by a set of multi-

resonant, centralized or decentralized DVAs are derived. It is assumed that the

characteristics of the networks or shunts emulated by the DVAs are known, which

allows for the quantification of the electromechanical coupling between the structural
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and electrical modes. These derivations will then be exploited in the next section to

tune the characteristics of the DVAs.

2.1. Governing equations of the host structure

Considering an undamped N -degree-of-freedom structure endowed with Np piezoelectric

transducers, the vectors of N generalized degrees of freedom x and generalized loadings

f and the vectors of Np piezoelectric voltages Vp and charges qp are dynamically related

by the governing equations{
(s2M + Koc) x−Θqp = f

ΘTx− Eε
pqp = Vp

, (1)

where M, and Koc are N × N structural mass and open-circuit stiffness matrices,

respectively, Θ is a N×Np piezoelectric coupling matrix, Eε
p is the Np×Np piezoelectric

elastance (inverse of capacitance) matrix at constant strain of the transducers, and s is

Laplace’s variable [30, 31]. The mass-normalized open-circuit modes are defined by

KocΦoc = MΦocΩ
2
oc, ΦT

ocMΦoc = I, x = Φocηoc, (2)

where Φoc is the N × N open-circuit mode shape matrix, Ωoc = diag (ωoc,1, · · · , ωoc,N)

is a diagonal matrix containing the circular open-circuit resonance frequencies, ηoc is

a vector of N modal coordinates and I is the identity matrix. With Equation (2),

Equation (1) can also be rewritten in modal form as{ (
s2I + Ω2

oc

)
ηoc −ΘΦqp = ΦT

ocf

ΘT
Φηoc − Eε

pqp = Vp
, (3)

where ΘΦ = ΦT
ocΘ is a N ×Np modal piezoelectric coupling matrix.

2.2. Governing equations of the controlled system

A multiport DVA is now connected to the transducers of the host structure as shown in

Figure 1, and the dynamics of this system are analyzed. Assuming that the digital unit

input Vin and output Vout are proportional to the piezoelectric voltages and currents,

respectively, these signals are given by

Vin = GinVp and sqp = GoutVout . (4)

In principle, Gin and Gout should be invertible diagonal matrices representing the

voltage sensors and current sources gains, respectively. In the mathematical framework

considered herein, they only need to be full rank. With Equation (4), the governing

equations of the host system (Equation (3)) become{ (
s2I + Ω2

oc

)
ηoc − s−1BVout = ΦT

ocf

Cηoc − s−1DVout = Vin
, (5)

where

B = ΘΦGout, C = GinΘ
T
Φ, D = GinE

ε
pGout. (6)
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These matrices may be identified experimentally using only the DVAs. Indeed, by

injecting a current in the system through the signal Vout and measuring its response

through Vin, state-of-the-art identification techniques can be used to deduce B, C, D

and Ωoc. Examples of such techniques include subspace identification [32], eigensystem

realization [33] or polyreference least-squares complex frequency-domain methods [34].

This advocates the development of a tuning approach solely exploiting the matrices

given in Equation (5), which models the system inside the red dashed frame in Figure 1.

In this way, one can tune the DVAs for effective multimodal vibration mitigation without

the need to build a sophisticated numerical model of the host structure and/or to use

any external excitation device.

The set of DVAs connected to the transducers can be programmed such that they

impose an input-output relation governed by the impedance matrix ZDV A

Vin = ZDV A(s)Vout (7)

so that, using the electrical part of Equation (5),

Cηoc = (D + sZDV A(s)) s−1Vout. (8)

ZDV A can be designed in order to create a network that resonates with the piezoelectric

transducers at Ne frequencies, i.e.,

ΦT
in (D + sZDV A(s)) Φout = s2Ω−2

e + 2sZeΩ
−1
e + I, (9)

where Φin and Φout are the network input and output mode shapes, respectively, of size

Np × Ne, and Ωe = diag (ωe,1, · · · , ωe,Ne) and Ze = diag (ζe,1, · · · , ζe,Ne) are diagonal

matrices containing the electrical resonance frequencies and damping ratios, respectively.

The electrical input and output mode shapes are distorted versions of the electrical mode

shapes of a passive network Φp. This distortion is introduced to compensate for the

input and output gain matrices. When these gain matrices are equal to the identity,

the mode shape matrices are all identical (see Equation (A.7)). If electrical modal

coordinates ηe are introduced such that

s−1Vout = Φoutηe, (10)

the combination of Equations (7)-(10) inserted into Equation (5) gives the governing

equations of the electromechanical system{ (
s2I + Ω2

oc

)
ηoc −BΦoutηe = ΦT

ocf(
s2Ω−2

e + 2sZeΩ
−1
e + I

)
ηe −ΦT

inCηoc = 0
. (11)

These equations express the dynamics in terms of resonant mechanical and electrical

modal coordinates, and can be seen as a generalization of the governing equations for

a single-degree-of-freedom structure controlled with a RL shunt (see, e.g., [2, 35]). By

matching the electrical resonance frequencies to those of the structure and properly

tailoring the electrical mode shapes and damping ratios, effective multimodal damping

can be achieved [21, 24, 28].

The DVAs are programmed to mimic the action of a passive network in this work.

This results in a control apparatus featuring satisfactory performance with advantageous
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stability properties [26]. The extension to purely active control appears to be possible

but is beyond the scope of the present article. The conditions under which the DVAs

emulate a passive network are derived in Appendix A.1. The input and output mode

shapes are chosen to satisfy the condition

BΦout = CTΦin. (12)

Due to possible errors that may arise during the experimental identification, this equality

may not exactly hold. However, the input and output electrical mode shapes can be

chosen so as to make this error minimum in the least-squares sense. The departure from

equality will thus be small and shall be neglected in the sequel.

A passivity constraint limiting the amplitude of the electrical mode shapes is also

derived as

I−ΦT
inDΦout � 0, (13)

where � 0 denotes that the matrix has non-negative eigenvalues.

It should finally be noted that the case Gin = Gout = I corresponds to an actual

passive network, similarly to, e.g., [17, 28]. The model developed herein is thus more

general and allows for the development of the model-less tuning procedure proposed

herein.

2.3. Decentralized set of DVAs

(a) (b) (c)

Figure 2: Schematic representation of a structure (in gray) with piezoelectric transducers

(in orange) connected to decentralized (a), partially decentralized (b) and centralized (c)

absorbers (in white).

It is now assumed that the transducers and DVAs are grouped into Ng independent

groups. Figure 2 schematizes several examples of such groups. We note that

this formalism can represent a fully decentralized situation (i.e., individually-shunted

transducers) when Ng = Np, or a fully centralized network when Ng = 1. The collective

dynamics of the groups can be expressed under the form of an equivalent, global network.

Indeed, the matrices of electrical resonance frequencies and damping ratios can be built

as block diagonal ones as

Ωe = blkdiag
(
Ω(1)

e , Ω(2)
e , · · · , Ω(Ng)

e

)
, (14)

Ze = blkdiag
(
Z(1)

e , Z(2)
e , · · · , Z(Ng)

e

)
, (15)

where Ω(g)
e and Z

(g)
e are the matrices of electrical resonance frequencies and damping

ratios, respectively, of group g. Assuming group g targets N
(g)
e modes, these matrices
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dimensions are N
(g)
e ×N (g)

e . Similarly, the input and output mode shapes are sought to

be determined independently on each group as

Φin = blkdiag
(
Φ

(1)
in , Φ

(2)
in , · · · , Φ

(Ng)
in

)
, (16)

Φout = blkdiag
(
Φ

(1)
out , Φ

(2)
out , · · · , Φ

(Ng)
out

)
. (17)

A decentralized implementation is only possible if D itself has a block diagonal

structure (this claim will be justified hereafter in Section (3.3)). The non-block-diagonal

terms are generally small and can be neglected (this assumption is further discussed in

the supplementary materials of this article). Hence, D is decomposed into

D = DBD + DND, (18)

where DBD is a block diagonal matrix whose diagonal blocks are equal to those of D,

i.e.,

DBD = blkdiag
(
D(1) , · · · , D(Ng)

)
, (19)

with D(g) the restriction of D to the electrical degrees of freedom of group g. DND then

contains the non-diagonal blocks (for a fully centralized network, D = D(1) = DBD and

DND = 0). The electrical mode shapes will be tuned ignoring the latter, i.e., setting

them considering that Equation (9) is replaced by

ΦT
in (DBD + sZDV A(s)) Φout = s2Ω−2

e + 2sZeΩ
−1
e + I. (20)

2.4. Modal electromechanical coupling

The electromechanical coupling between resonant mechanical and electrical modes is

now assessed. It is a key factor for the absorbers’ performance, because the greater this

coupling, the greater the attenuation [36]. In a similar spirit to [28], the coupling

is evaluated by considering that a mechanical mode is targeted by (at most) one

electrical mode per group, and that these modes resonate together. Hence, in Equation

(11), a single mechanical resonant mode r and corresponding electrical resonant modes

(distributed over the groups targeting that mode) indexed by k are considered, while

every other mode is assumed to be quiescent. This leads to the reduced dynamical

equations { (
s2 + ω2

oc,r

)
ηoc,r − brΦout,kηe,k = φT

oc,rf(
s2Ω−2

e,k + 2sZe,kΩ−1
e,k + I

)
ηe,k −ΦT

in,kcrηoc,r = 0
, (21)

where br and cr are the rth line of B and column of C, respectively. Condensing the

electrical equations into the mechanical one yields{(
s2 + ω2

oc,r

)
− brΦout,k

(
s2Ω−2

e,k + 2sZe,kΩ−1
e,k + I

)−1
ΦT

in,kcr

}
ηoc,r = φT

oc,rf . (22)

Similarly to shunts, modal-short- and modal-open-circuit resonance frequencies, ω̂sc,r

and ω̂oc,r, can be found by evaluating the limit of the term coming from the
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electromechanical interaction for s → 0 and s → ∞, respectively [37]. When s → ∞,

this term tends to zero and thus ω̂oc,r = ωoc,r. As for the case when s→ 0,

ω̂2
sc,r = ω2

oc,r − brΦout,kΦT
in,kcr. (23)

A modal electromechanical coupling factor (MEMCF) αc,rk can be defined by‡

α2
c,rk =

ω̂2
oc,r − ω̂2

sc,r

ω̂2
oc,r

=
1

ω2
oc,r

brΦout,kΦT
in,kcr (24)

and, using Equation (12), the MEMCF can also be expressed as

αc,rk =
1

ωoc,r

||brΦout,k|| =
1

ωoc,r

||ΦT
in,kcr||, (25)

where || · || represents the Euclidean norm of a vector. Decomposing the modal coupling

vector into contributions from each group, the MEMCF becomes

αc,rk =
1

ωoc,r

√√√√ Ng∑
g=1

(
b

(g)
r φ

(g)
out,k

)2

, (26)

with br =
[
b

(1)
r , · · · , b

(Ng)
r

]
and Φout,k = blkdiag

(
φ

(1)
out,k , · · · , φ

(Ng)
out,k

)
. It should

be emphasized that this MEMCF is related to the network, and it might differ from

that of the transducers (measured by the normalized difference in resonance frequencies

when the transducers are all in short and open circuit), which is a given characteristic

of the host system.

3. Tuning of centralized and decentralized absorbers

The dynamics and coupling characteristics derived in the previous section are now

exploited to tune the DVAs. Specifically, the electrical mode shapes, resonance

frequencies and damping ratios are optimized to provide effective multimodal vibration

mitigation of the controlled structure. The host system is assumed to be given, with

fixed characteristics (including the size, position and materials of the transducers).

The electrical mode shapes are first tailored to maximize the modal electromechanical

coupling of the network with the targeted resonances of the host system. The electrical

resonance frequencies and damping ratios are then tuned in adequacy with this coupling.

Finally, the realization of the resulting shunt(s) and/or network(s) using DVAs is

discussed.

3.1. Optimal input and output mode shapes

It is now sought to find input and output mode shapes maximizing the electromechanical

coupling with the mode they target while respecting the passivity constraint. According

‡ In the field of piezoelectric shunts, the short-circuit resonance frequency is more commonly used for

normalization [2]. The other convention is used in this section for simplicity, but there is little difference

between the two normalizations in practice.
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to Equation (26), the MEMCF is maximized if the terms inside the sum, representing

the action of each group, are themselves maximized. Hence, an objective function can

be defined as the weighted sum of these terms for every targeted mode as

Ne∑
r=1

Ng∑
g=1

w(g)
r

1

ωoc,r

b(g)
r φ

(g)
out,k =

Ng∑
g=1

Tr
(
W(g)Ω−1

oc B(g)Φ
(g)
out

)
, (27)

where Tr denotes the trace operator, and the (positive) coefficients w
(g)
r are chosen by

the designer to weight the desired control authority over the modes targeted by group

g. These weights are gathered in a diagonal matrix W(g) = diag
(
w

(g)
1 , · · · , w(g)

N
(g)
e

)
and

B(g) is the restriction of B to the electrical degrees of freedom of group g. Including the

passivity constraint (Equation (13)), the optimal electrical mode shapes are thus chosen

to be the solution of the constrained optimization problem

Maximize
Φin,Φout

∑Ng

g=1 Tr
(
W(g)Ω−1

oc B(g)Φ
(g)
out

)
Subject to I−ΦT

inDΦout � 0
. (28)

If the matrix D is block diagonal, or if its non-block diagonal part is neglected (i.e., D ≈
DBD), the passivity constraint is decoupled on each group (Equations (17) and (19)).

Finally, we note that the objective function consists of independent contributions from

each group as well. The optimization problem can therefore be solved group by group

as

Maximize
Φ

(g)
in ,Φ

(g)
out

Tr
(
W(g)Ω−1

oc B(g)Φ
(g)
out

)
Subject to I−

(
Φ

(g)
in

)T
D(g)Φ

(g)
out � 0

, g ∈ [1 , · · · , Ng] . (29)

An analytical solution to this optimization problem can be found (see Appendix

A.2 for the proof). Let the singular value decomposition (SVD) of D(g) be given by

D(g) = U
(g)
D Σ

(g)
D

(
V

(g)
D

)T
. (30)

Modified input and output matrices are built as

B(g)V
(g)
D

(
Σ

(g)
D

)−1/2

=

[ (
b

(g)
D,1

)T
· · ·

(
b

(g)

D,N
(g)
e

)T ]T
, (31)

(
C(g)

)T
U

(g)
D

(
Σ

(g)
D

)−1/2

=

[ (
c

(g)
D,1

)T
· · ·

(
c

(g)

D,N
(g)
e

)T ]T
, (32)

and a scaling matrix S(g) = diag
(
s

(g)
1 , · · · , s(g)

N
(g)
e

)
whose elements are built from the

rows of these modified input and output matrices as

s
(g)
k =

√√√√ ||c(g)
D,k||

||b(g)
D,k||

, k ∈ [1, · · · , N (g)
e ]. (33)

Finally, given the compact SVD

S(g)W(g)Ω−1
oc B(g)V

(g)
D

(
Σ

(g)
D

)−1/2

= U
(g)
M Σ

(g)
M

(
V

(g)
M

)T
, (34)
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optimal input and output mode shapes are given by

Φ
(g)
in = U

(g)
D

(
Σ

(g)
D

)−1/2

Ψ(g)
(
S(g)
)−1

(35)

and

Φ
(g)
out = V

(g)
D

(
Σ

(g)
D

)−1/2

Ψ(g)S(g), (36)

respectively, with the optimal dimensionless electrical mode shape matrix

Ψ(g) = V
(g)
M

(
U

(g)
M

)T
, (37)

with which the passivity constraint becoming

I−
(
Ψ(g)

)T
Ψ(g) � 0 (38)

is respected. Further elaboration on these results is made in Section 4, but the complete

tuning procedure is first presented in the foregoing section.

3.2. Optimal electrical resonance frequencies and damping ratios

It is now possible to tune the resonance frequencies and damping ratios of the networks.

To comply with the normalization used in [38], an MEMCF normalized with the short-

circuit frequency is computed from Equation (24) as

K2
c,rk =

ω̂2
oc,r − ω̂2

sc,r

ω̂2
sc,r

=
α2
c,rk

1− α2
c,rk

. (39)

Using the resonance frequency ωoc,r and the MEMCF in the optimal tuning rule derived

by Soltani et al [35, 38], an intermediate parameter given by

re,k =

√
64− 16K2

c,rk − 26K4
c,rk −K2

c,rk

8
, (40)

is used to compute the optimal electrical resonant frequency and damping ratio as

ωe,k =

√
3K2

c,rk − 4re,k + 8

4K2
c,rk + 4

ωoc,r (41)

and

ζe,k =

√
27K4

c,rk + 80K2
c,rk + 64− 16re,k

(
4 + 3K2

c,rk

)
√

2
(
5K2

c,rk + 8
) , (42)

respectively. Eventually, the optimal electrical resonance frequency and damping ratio

are attributed to each group by simply setting

Ω−2
e,k = ω−2

e,kI (43)

and

Ze,k = ζe,kI, (44)

respectively.



Shunts vs. networks 11

3.3. Admittance realization

The now fully-specified network can be realized with DVAs. For this, a MIMO

relation between Vout and Vin can be prescribed with state-space models. Combining

Equations (7), (10) and (20),

ΦT
inVin = ΦT

inZDV A(s)Vout

=
(
ΦT

in (DBD + sZDV A(s)) Φout −ΦT
inDBDΦout

)
ηe

=
(
s2Ω−2

e + 2sZeΩ
−1
e + I−ΦT

inDBDΦout

)
ηe.

(45)

This system and Equation (10) are thus equivalent to the following state-space model[
η̇e

η̈e

]
=

[
0 I

−Ω2
e

(
I−ΦT

inDBDΦout

)
−2ΩeZe

][
ηe

η̇e

]
+

[
0

Ω2
eΦ

T
in

]
Vin

= Ae

[
ηe

η̇e

]
+ BeVin,

Vout =
[

0 Φout

] [ ηe

η̇e

]
= Ce

[
ηe

η̇e

]
.

(46)

Owing to the block diagonal structure of every matrix used to build the state-space

matrices in Equation (46), the latter have a block structure. Upon reordering the state

variables, this block structure results into a block diagonal one. Hence, the state-space

model can equivalently be built as the union of all state-space matrices built from

Equation (46) using the group matrices D
(g)
e , Ω(g)

e , Z
(g)
e , Φ

(g)
in and Φ

(g)
out in place of their

global counterparts. This allows for a decentralized implementation of the networks,

as expected. This realization is only possible thanks to the block diagonal structure of

DBD. Had it been non-block-diagonal, either ΦT
inDBDΦout or Φin and Φout would also

have had to lose that property, making a decentralized implementation impossible.

When the shunts and/or networks are to be emulated by digital units, an equivalent

discrete state-space model can be obtained via Tustin’s transform.

3.4. Summary of the tuning procedure

To end this section, the proposed tuning procedure is summarized. It goes as follows:

(i) Identify a model of the structure (Equation (5)): matrices Ωoc, B, C and D.

(ii) Select the modes to be targeted and set the associated weights for each group W(g).

(iii) For each group, determine the optimal input and output electrical mode shapes

(Equations (30)-(37)).

(iv) For each targeted mode,

(a) Compute the network’s electromechanical coupling factors (Equations (24)

and (39)).

(b) Compute the optimal electrical resonance frequency (Equation (41)) and

damping ratio (Equation (42)).
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(c) Compute the electrical resonance frequency matrix (Equation (43)) and

damping ratio matrix (Equation (44)).

(v) For each group, compute the state-space matrices (Equation (46)).

A more refined tuning procedure accounting for neglected effects was devised by

the authors. The procedure is essentially similar to the one presented in this article, but

brings corrections to the electrical resonance frequency and damping matrices in order

to account for the effect of non-resonant modes [9] and sampling delays [39]. Owing to

the rather technically involved character of this improved approach, it is detailed in the

supplementary materials of this article. It should nonetheless be noted that the tuning

approach explained therein is used in the examples in Sections 4 and 5. In general,

accounting for non-resonant modes resulted in an improvement of maximum 1 dB in

the attenuation in the cases studied in this work. This improvement could be more

significant for more complex structures.

4. Performance comparison of centralized and decentralized absorbers

Using a fully centralized control approach may raise a series of practical issues. Since

multiple transducers have to be controlled simultaneously, the DVA must have a

sufficient number of inputs and outputs per digital unit, and computing power to handle

the input-output relations in real time. If a network made up of passive elements were

used, the large number of possible interconnections would potentially result in a large

number electrical elements. A natural question is thus to ask what advantage the

centralized approach has over the decentralized one.

Owing to the complexity of predicting the output of the SVDs necessary to compute

the optimal electrical mode shapes in a general case, the discussion for multiple modes

stays rather qualitative. General trends on performance of centralized and decentralized

absorbers can nonetheless be deduced. Being understood that the discussion concerns

a specific group, the superscript (g) is dropped in this section.

4.1. Single-mode case

When a single mode is considered, the dimensionless mode shape matrix reduces to a

vector (i.e., Ψ = ψ) and the passivity constraint (Equation (38)) reduces to

1−ψTψ ≥ 0, (47)

i.e., ψ should be a unit vector. Using Equations (29) and (36), the optimal dimensionless

electrical mode shape is

ψ? = arg max
ψ

s1w1

ωoc,r

bT
r VDΣ

−1/2
D ψ. (48)

Under its unitary constraint, it maximizes the objective function when it is aligned

with brVDΣ
−1/2
D . This direction thus defines an optimal dimensionless mode shape

that maximizes the MEMCF with mode r. This is similar to the principle used to tune
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electrical analogs [21]: the electrical mode shapes should resemble those of the structure,

as seen from the transducers.

Appendix A.3 demonstrates that decentralization has no effect on performance in

this case. The network is thus equivalent to a set of RL circuits shunting each transducer

individually and targeting the same mode. Intuitively, this result can be expected,

because the full control capability of all transducers is focused on a single mode. In

other words, the MEMCF of the network attains that of the transducers.

4.2. Multimodal case

When the shunts or networks target multiple modes, the passivity constraint expressed

with dimensionless electrical mode shapes (Equation (38)) reads

I−ΨTΨ =


1−ψT

1ψ1 −ψT
1ψ2 · · · −ψT

1ψNe

−ψT
2ψ1 1−ψT

2ψ2 · · · −ψT
2ψNe

...
...

. . .
...

−ψT
Ne
ψ1 −ψT

Ne
ψ2 · · · 1−ψT

Ne
ψNe

 � 0. (49)

This matrix is positive semidefinite if and only if all of its principal minors are non-

negative [40]. Considering the principal minors of order one (i.e., the diagonal elements),

the following inequality for the kth minor

1−ψT
kψk ≥ 0 (50)

must be satisfied. Similarly to the single mode case, this limits the norm of dimensionless

mode shapes to one. Considering now minors of order two with rows k and l,

(1−ψT
kψk)(1−ψT

l ψl)− (ψT
kψl)

2 ≥ 0, (51)

which places further limits on the norms of these vectors if they are not orthogonal (i.e.,

when ψT
kψl 6= 0). When possible, the SVD decomposition usually yields a family of

orthogonal vectors Ψ to negate the influence of this constraint. This maximizes the

norms of the dimensionless mode shapes and hence the electromechanical coupling.

When all optimal dimensionless mode shapes are orthogonal, a network that

simultaneously attains optimal performance on each mode can be synthesized, i.e.,

the network attains the same MEMCFs as the transducers for all targeted modes.

Following from the discussion in Section 4.1, this optimal performance would be observed

individually on a specific mode if the set of transducers were connected to RL shunts

targeting that mode. When this ideal case is not met, trade-offs have to be made

between the controlled modes. The chosen weighting coefficients then set how the mode

shapes align with their optimal counterparts, which directly affects the electromechanical

coupling of the concerned modes (Equation (26)).

This electrical mode shapes optimization differs with the traditional electrical

analog concept, and with the approach proposed in [28]. Indeed, in these approaches,

the mode shapes are fixed equal to their single-mode optimal counterparts. Moreover,

the dimensionless mode shapes orthogonality relates to the approach in [17], but the
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method herein is more general and allows for the control of an arbitrary number of

modes. From a control point of view, this corresponds to optimizing a set of gains

between the transducers (which are used simultaneously as sensors and actuators) under

the passivity constraint to maximize control authority.

We note that it is not possible to obtain a set of orthogonal dimensionless mode

shapes when there are more modes to be controlled than transducers (because it is not

possible to have Ne linearly independent vectors in a space of dimension Np if Np < Ne).

Inherent performance limitations are thus to be expected in that case. This is more likely

to happen when a decentralized approach is preferred over a centralized one, because

the number of transducers per group Np decreases. In particular, when there is a single

transducer, Ψ is a 1×Ne vector. The matrix I−ΨTΨ then admits ΨT as eigenvector

with associated eigenvalue 1−ΨΨT . The other eigenvectors are orthogonal to ΨT and

are associated to a unit eigenvalue. All eigenvalues are thus positive if 1 −ΨΨT ≥ 0,

i.e.,
Ne∑
n=1

ψ2
n ≤ 1. (52)

This passivity constraint is identical to that derived in [37] with Foster’s reactance

theorem. Specifically, the residues introduced therein correspond to squared modal

amplitudes herein. It is also identical to the constraint imposed on the decentralized

control approach obtained from the Youla parametrization of all stabilizing controllers

proposed in [26].

Finally, it can be observed that a lack of orthogonality between the modes would

result in a positive semidefinite matrix I−ΦT
inDΦout . Equations (45) and (46) show that

this matrix is associated with positive capacitive effects in the network. For shunts, it is

known that positive capacitances negatively affect the electromechanical coupling [8, 11].

This gives another way to understand the adverse effects of the lack of orthogonality

between the electrical modes.

In summary, optimal performance may be attained simultaneously on multiple

modes if the associated optimal dimensionless mode shapes (which are characteristics

of the host system) are orthogonal. Decentralization may have a detrimental effect

on performance, especially if the optimal dimensionless mode shapes on the resulting

subnetworks are not orthogonal. This is always the case when the number of targeted

modes exceeds the number of transducers in the network, which is the case in particular

for multi-resonant shunts. Trade-offs between the controlled modes then have to be

made through the user-selected weighting coefficients. Since the upper bound for the

subnetwork MEMCF is given by the MEMCF of its transducers, the latter also have to

be selected according to the set of modes they should target.

4.3. A free-free piezoelectric beam

The free-free piezoelectric beam depicted in Figure 3 is considered herein to illustrate

the effects of decentralization. It is excited by an external force at one end and its
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Figure 3: Schematic representation of the free-free piezoelectric beam [22].

response is measured at the other end. Details about this structure can be found

in [22]. Twenty pairs of piezoelectric patches connected in parallel (each forming a

piezoelectric cell) are distributed over the length of the structure and used to damp

its first four bending modes. Similarly to [28], a finite element model of the beam

was built using the procedure proposed by Thomas et al [30] with ten elements per

cell. A model order reduction using the method in [41] was performed by retaining

the excited mechanical and electrical degrees of freedom as well as twenty component

normal modes. No damping was added to the host to focus on the effect of the proposed

control approaches.
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Figure 4: Mobility of the free-free beam with patches connected to individual series RL

shunts, all targeting mode 1 (——), 2 (——), 3 (——) and 4 (——), and to a centralized

network targeting the first four modes (- - - -).

4.3.1. Optimal performance of a fully centralized network The simultaneous optimal

vibration reduction brought by a network on the first four bending modes is assessed.

Figure 4 features the frequency response function (FRF) of the beam with a fully

centralized network interconnecting the twenty patches and targeting the first four

modes. Four other cases where all patches are individually shunted with single-mode

series RL shunts, all targeting the same mode (one of the first four modes per case), are

also displayed for comparison. For the network, identical unit weights were attributed

to the four modes. Clearly, the network simultaneously attains the same performance

on the four controlled modes as individual shunts focusing on a single mode, whereas
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the latter produce nearly no attenuation on the non-targeted modes. This is possible

because the modes of the beam are orthogonal, as seen from the twenty transducers.

This illustrates the interest of centralization in terms of multimodal control.

Table 1: Modes targeted by the single-mode shunts for the free-free beam.

Patch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Mode 1 4 4 4 3 2 2 1 3 1 3 1 1 2 2 3 4 4 3 2

Table 2: Patches distribution among the groups in different cases for the free-free beam.

Patch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Shunts 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Adjacent 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

Alternate 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Centralized 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4.3.2. Effect of decentralization The effects of decentralization are now investigated

in terms of vibration reduction of the first four modes. Five cases are considered.

The first two cases use individually-shunted patches with single-mode (series RL) or

multi-resonant shunts. The mode distribution among the single-mode shunts (carried

out manually to optimize and balance coupling with the targeted modes) is given in

Table 1. We note that the multi-resonant shunts could be realized with classical circuits

such as the current flowing or current blocking shunts [11] using the procedure described

in [12]. The third and fourth cases consist in partially decentralized approaches, where

four networks interconnect different sets of patches. In the third case, geometrically

adjacent patches are grouped together, whereas in the fourth case, adjacent patches are

alternatively distributed among the groups. The last case considers a fully centralized

network interconnecting all patches. The patches distribution among the groups is

detailed in Table 2. In all cases, each circuit or network targets the four modes with

equal, unit weights on each mode.

Figure 5 presents the FRF of the beam for the five cases. As expected, the fully

decentralized and centralized approaches result in the worst and best cases, respectively.

The partially decentralized case with adjacent patch distribution features intermediate

performance, while that with alternate distribution is identical to that of the fully

centralized network. This shows that the patches distribution among the groups has a

significant influence on performance. We also note that single-mode shunts outperform

multi-resonant ones. This comes from the optimization of the modes distribution among

the single-mode shunts. A better performance could be expected for multi-resonant

shunts if the control weights were optimized as well, but this was not pursued here for
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Figure 5: Mobility of the free-free beam with open-circuited patches (——), individual

series RL shunts (——), individual multi-resonant shunts (— · —), four networks with

adjacent (— · —) and alternate (——) distributions and a centralized network (- - - -)

targeting the first four modes.

Table 3: Maximum amplitude of the free-free beam response in the vicinity of the

targeted modes in different cases.

Mode 1 2 3 4

Shunts, single-mode -19.8 dB -28.7 dB -33.9 dB -38.7 dB

Shunts, multi-resonant -19.2 dB -27.7 dB -33.4 dB -37.9 dB

Adjacent -20.9 dB -28.6 dB -35.3 dB -39.9 dB

Alternate -23.4 dB -32.2 dB -38.0 dB -42.4 dB

Centralized -23.4 dB -32.2 dB -38.0 dB -42.4 dB

simplicity. The maximum amplitude in the vicinity of each targeted mode for each case

is reported in Table 3.
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Figure 6: AutoMAC matrix of the optimal electrical mode shapes for the groups with

adjacent patches distribution: groups 1 (a), 2 (b), 3 (c) and 4 (d).

Further insight can be gained to understand the difference between the adjacent

and alternate cases by looking at the optimal dimensionless electrical mode shapes

orthogonality. To assess this, the auto modal assurance criterion (AutoMAC) matrix
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Figure 7: AutoMAC matrix of the optimal electrical mode shapes for the groups with

alternate patches distribution: groups 1 (a), 2 (b), 3 (c) and 4 (d).

whose entry (i, j) is defined by [24, 42]

(AutoMAC)ij =

(
(ψ?

i )
T ψ?

j

)2

||ψ?
i ||2||ψ?

j ||2
=
(

(ψ?
i )

T ψ?
j

)2

(53)

can be used. The values that this entry can take range from zero to one; a value

of zero for a non-diagonal entry indicates near-orthogonality between the associated

modes. The AutoMAC matrices are featured in Figures 6 and 7 for the adjacent

and alternate distributions, respectively. Clearly, the alternate distribution features

much better (almost perfect) orthogonality, allowing the passive networks to attain

optimal performance on all controlled modes simultaneously. By contrast, the adjacent

distribution performance is hindered by the lack of orthogonality of the optimal electrical

mode shapes.

5. A clamped-free piezoelectric beam

The theoretical developments are numerically and experimentally illustrated on a

clamped-free piezoelectric beam in this section.

5.1. Numerical verification

12345678910 f x

Figure 8: Schematic representation of the clamped-free piezoelectric beam with a thin

lamina.

The 70 cm long clamped-free beam with an attached thin lamina depicted in

Figure 8 is now considered. Ten pairs of piezoelectric patches connected in parallel

(each forming a piezoelectric cell) are distributed over the length of the beam. Details

about this structure can be found in [12, 25]. We note that the thin lamina can be
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Table 4: Numerical characteristics of the clamped-free piezoelectric beam with five

equivalent transducers (parallel connection of cells (1,2), (3,4), (5,6), (7,8) and (9,10)).

Mode 1 2 3 4

foc (Hz) 33 158 435 846

K
(1)
c (-) 0.13 0.095 0.045 0.003

K
(2)
c (-) 0.081 0.055 0.106 0.056

K
(3)
c (-) 0.037 0.126 0.005 0.105

K
(4)
c (-) 0.005 0.093 0.12 0.065

K
(5)
c (-) 0.006 0.019 0.046 0.07

responsible for a nonlinear structural behavior [25], but the forcing levels considered in

this study are kept low enough to make this effect negligible.

The beam is excited 20 cm away from its clamped end, and its collocated

displacement is monitored to assess the performance of the different control approaches.

Similarly to [12], a finite element model of the beam was built with one element per

millimeter and reduced by retaining the excited mechanical and electrical degrees of

freedom as well as twenty component normal modes [30, 41]. Modal damping of 0.2%

was added on each mode to simulate approximately the experimental results.

In order to replicate the experimental setup considered in Section 5.2.5, all

piezoelectric cells are connected in parallel by adjacent pairs (2i−1, 2i) with i = 1, · · · , 5,

forming five equivalent transducers (which are ordered starting from the clamped end).

The characteristics of the beam are reported in Table 4. In this table, foc = ωoc/(2π) is

the resonance frequency of the structure with all equivalent transducers in open circuit,

and K
(p)
c is evaluated with Equation (39) for the equivalent transducer p.
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Figure 9: Numerical receptance of the clamped-free beam with five equivalent

transducers in open circuit (——), connected to a network (——), three decentralized

networks (——) or five shunts (——) targeting the first four modes.

Figure 9 presents the receptance of the beam controlled with different approaches.
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Table 5: Maximum voltages and currents of the absorbers under a harmonic external

forcing for the clamped-free beam.

Equivalent transducer 1 2 3 4 5

Maximum voltage, shunts (V/N) 22.15 8.62 13.68 7.98 3.14

Maximum current, shunts (mA/N) 0.48 1.27 1.30 2.01 1.66

Maximum voltage, partially decentralized (V/N) 19.80 14.05 11.57 8.33 1.87

Maximum current, partially decentralized (mA/N) 0.56 1.34 1.35 1.82 0.97

Maximum voltage, centralized (V/N) 19.64 12.30 10.00 7.44 1.98

Maximum current, centralized (mA/N) 0.77 1.52 1.23 1.60 0.83

In addition to the fully centralized and decentralized cases, a partially decentralized case

was investigated, grouping the equivalent transducers 1 and 2, as well as 3 and 4, while

leaving transducer 5 individually shunted. The three approaches are thus similar to the

three cases depicted in Figure 2. In all cases, weights w1 = 1, w2 = 0.88, w3 = 0.71 and

w4 = 0.77 were empirically attributed to the four modes to obtain a somewhat balanced

reduction of about 30 dB for each mode. Again, all approaches feature effective vibration

mitigation of the targeted modes. The fully decentralized, partially decentralized and

fully centralized approaches rank from worst to best in terms of performance.

To have an idea of the control effort in each case, Table 5 gathers the

maximum voltages and currents of each transducer under a harmonic external forcing.

Furthermore, the maximum voltage can be used as a design criterion to choose the

electronic components of the DVA and the supply voltage. Finally, this supply voltage

and the maximum current can be used to estimate the power consumption of the

DVA [41].

5.2. Experimental validation

Shaker

DVAsPower supply

Beam Impedance head

Figure 10: Picture of the experimental setup.
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Table 6: Experimental damping ratios of the clamped-free piezoelectric beam.

Mode 1 2 3 4

Damping ratio (-) 0.0030 0.0015 0.0022 0.0063

Table 7: Experimental characteristics of the clamped-free piezoelectric beam with two

equivalent transducers (parallel connection of cells (1,2) and (4,5)).

Mode 1 2 3

foc (Hz) 33 146 383

K
(1)
c (-) 0.091 0.059 0.008

K
(2)
c (-) 0.046 0.092 0.05

The beam whose numerical model was studied in Section 5.1 was used to

experimentally validate the proposed approach. Figure 10 shows a picture of the

experimental setup. The beam was excited with an electrodynamic shaker 20 cm away

from its clamped end. The force applied on the structure and its collocated acceleration

were measured by an impedance head. Different sets of patches were connected to

custom-made DVAs. These DVAs were realized by connecting a dSPACE MicroLabBox

controller to up to five custom-made analog circuits containing a voltage sensor and

a current injector. Details about the analog circuits are given in Appendix B. The

sampling frequency of the digital unit was set to 50 kHz, i.e., more than 50 times

higher than the highest frequency of the controlled modes. Yet, the effect of delays was

observable and a procedure to counteract this, based on the approach proposed in [39],

was used (which is also detailed in the supplementary materials of this article).

The characteristics of the host system were measured using DVAs only. A set of

pseudorandom excitation currents were injected into the patches, and their voltages

were recorded. Estimates of the matrices in Equations (6) were then derived using the

PolyMAX identification method [34]. Damping ratios of 0.1 to 0.6% were identified for

the first four bending modes of the uncontrolled structure, as reported in Table 6.

5.2.1. Control of two modes with two transducers The first two bending modes of the

beam were targeted to begin with. To simultaneously maximize and balance the control

authority over these two modes, two equivalent transducers, composed of the parallel

connection of cells (1,2) and (4,5) were used. These connections were chosen based on a

study of the numerical model to maximize coupling with the two first modes with two

equivalent transducers. Table 7 reports the experimental characteristics identified with

the PolyMAX method for the system under this configuration.

Figure 11 features experimental frequency response functions (FRFs) of the beam

with transducers in open circuit or connected to shunts or a network. For these two

latter cases, weights w1 = 1.2 and w2 = 1 were attributed to the first and second mode,
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Figure 11: Experimental receptance of the clamped-free beam with two equivalent

transducers in open circuit (——), connected to shunts (——) or a network (——)

targeting the first two modes with w1/w2 = 1.2.

respectively. The two targeted resonances are effectively mitigated by both approaches.

A slightly better performance in terms of amplitude reduction is obtained with networks.
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Figure 12: Attenuations on the targeted modes of the clamped-free beam as functions

of the weights ratio: network (—— : mode 1, —— : mode 2; –◦–: experimental, - - - -:

theoretical [36]) and shunts (—— : mode 1, —— : mode 2; –×–: experimental, - - - -:

theoretical [36]).

A more thorough investigation of the effect of the chosen control weights is reported

in Figure 12. FRFs of the controlled beam were measured for w2 = 1 and various

values of w1. All these FRFs are not disclosed here for brevity, but the attenuation

on each mode (defined as the ratio of the maximum amplitude of the open-circuit

FRF to that of the controlled FRF) is shown. A striking difference is observable

between networks and shunts: while the former are almost insensitive to the weight ratio

w1/w2, the latter clearly prioritize the mode with the highest weight at the expense of

attenuation on the other, which highlights the trade-off mentioned in Section 4.2. The

networks insensitivity can be explained by the near perfect orthogonality of the optimal
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dimensionless mode shapes in this setup.

The experimental attenuations can be compared to those which would theoretically

be expected. Based on the model given in Equation (21) and using the MEMCF

given by Equation (26) and the damping ratios evaluated from the open-circuit FRF, a

formula from Thomas et al [36] allows for the prediction of the attenuation, similarly

to what was done in [37]. As shown in Figure 12, there is a remarkable quantitative

agreement between the theoretical and experimental results. The respective sensitivity

and insensitivity of the shunts and networks to the weight ratio is clearly reproduced.

A slight disagreement can be observed between theory and experiments for shunts on

mode 2 around w1/w2 = 50. This can be explained by the fact that the frequency of

this mode was slightly underestimated, leading to an imperfect tuning of the resonant

shunts during this study. This is more significant for small weights on mode 2 (see, e.g.,

Figure 15 hereafter).

5.2.2. Robustness against frequency variations Resonant absorbers are an effective

solution for vibration mitigation, yet they are also known for lacking robustness [43].

To assess this, uncertainty in the host structure parameters was simulated by changing

the identified parameters, and using these modified parameters in the absorbers tuning.
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Figure 13: Ratio of the maximum of the experimental FRF amplitude of the clamped-

free beam in the detuned case to that in the tuned case of the network (–◦– : mode 1,

–◦– : mode 2) and shunts (–×– : mode 1, –×– : mode 2) under frequency variations

of the DVAs.

At first, a factor was applied to the identified frequencies of the first two modes,

thereby detuning the absorbers, while setting w1 = 1.2 and w2 = 1. Figure 13 features

the effect of such a detuning on performance for both control approaches. For a fair

comparison, the maximum amplitude of the FRF around the targeted mode for a

detuned case was divided by that of the tuned case. It can be observed that the

tuned case, where the frequency factor is equal to one, is optimal or nearly-optimal.

Underestimation or overestimation of the frequencies generally lead to a deterioration
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of the attenuation. This trend is qualitatively similar for shunts and networks owing

to their resonant nature, similarly to what was observed in [29]. Networks are slightly

more robust than shunts because of their higher electromechanical coupling with the

targeted modes [43].
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Figure 14: Ratio of the maximum of the experimental FRF amplitude of the clamped-

free beam in the detuned case to that in the tuned case of the network (–◦– : mode

1, –◦– : mode 2) and shunts (–×– : mode 1, –×– : mode 2) under mode shapes

variations of the DVAs.

5.2.3. Robustness against mode shapes variations A second series of robustness tests

was performed to assess the dependency of performance on the identified mode shapes.

To achieve this, the optimal input and output mode shapes were rotated by an angle θ

to yield their detuned counterparts Φ̃in and Φ̃out as

Φ̃in = Φin

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, Φ̃out = Φout

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, (54)

respectively. The values θ = 0 and θ = π correspond to the tuned case, and intermediate

values represent a detuning in the mode shapes. Figure 14 presents the effect of

such a rotation on performance. While shunts are mildly affected, networks feature

a strong dependency on a correct tuning of the mode shapes, the tuned case being the

optimal one. The case where θ = π/2 makes the detuned electrical resonant mode

shapes orthogonal to their tuned counterparts. This results in nearly no coupling, and

consequently nearly no attenuation on the targeted modes. Networks thus appear to

be more sensitive than shunts to mode shapes uncertainties. It should nonetheless be

noted that the worst case θ = π/2 corresponds to swapping the mode shapes of modes

1 and 2, which constitutes a huge error that is very unlikely to occur in practice.

5.2.4. Control of three modes with two transducers To highlight the limitations of

networks controlling more modes than their number of transducers, a case with two

transducers (identical to those of the previous case) used to mitigate the first three
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Figure 15: Experimental receptance of the clamped-free beam with two equivalent

transducers in open circuit (——), connected to a network (a) or shunts (b) targeting

the first three modes: baseline case (——), and emphasis on modes 1 (——), 2 (——)

and 3 (——).

bending modes is considered next. Figure 15 presents FRFs of the beam controlled with

networks and multi-resonant shunts. Between the second and third bending modes,

a dynamic phenomenon appears in place of an expected antiresonance (around 250

Hz). This feature could be attributed to a shaker-structure interaction, because it was

observed to be quite sensitive to the shaker and stinger positions. Another reason could

be the non-ideal, dynamic characteristics of the clamping. A detailed investigation was

not carried out since this occurs at low amplitudes anyways.

A baseline case was empirically selected with w1 = 0.1, w2 = 0.2 and w3 = 1.7 to

obtain a somewhat balanced reduction on all targeted modes. Emphasis on a specific

mode was then sought by multiplying the corresponding weight by ten while keeping

the weights associated with other modes to their baseline value. In contrast to the case

with two modes, a trade-off in performance is observable with networks, i.e., an increased

vibration reduction on a mode comes at the expense of reduced vibration reduction on

other modes, in accordance with the discussion in Section 4. The concessions that
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Table 8: Maximum experimental amplitude of the clamped-free beam response in the

vicinity of the targeted modes in different cases.

Mode 1 2 3

Open circuit -75.4 dB -72.2 dB -85.8 dB

Shunts, baseline -94.4 dB -93.2 dB -104.7 dB

Shunts, mode 1 -96.6 dB -88.8 dB -104.6 dB

Shunts, mode 2 -88.4 dB -99.7 dB -100.9 dB

Shunts, mode 3 -94.4 dB -88.8 dB -104.9 dB

Network, baseline -90.3 dB -91.1 dB -104.8 dB

Network, mode 1 -96.1 dB -84.5 dB -103.7 dB

Network, mode 2 -79.9 dB -99.4 dB -97.9 dB

Network, mode 3 -79.0 dB -76.1 dB -105.0 dB

Table 9: Experimental characteristics of the clamped-free piezoelectric beam with five

equivalent transducers (parallel connection of cells (1,2), (3,4), (5,6), (7,8) and (9,10)).

Mode 1 2 3 4

foc (Hz) 33 146 381 811

K
(1)
c (-) 0.093 0.059 0.009 0.02

K
(2)
c (-) 0.069 0.057 0.092 0.046

K
(3)
c (-) 0.027 0.102 0.021 0.079

K
(4)
c (-) 0 0.079 0.105 0.059

K
(5)
c (-) 0.006 0.015 0.036 0.058

have to be made by shunts are nonetheless much more stringent, and in some cases the

amplitude of the non-emphasized modes is barely reduced compared to the uncontrolled

case. Table 8 summarizes the maximum amplitude in the vicinity of the controlled

modes.

5.2.5. Control of four modes with five transducers A final case is investigated to

demonstrate the control of the first four bending modes (i.e., all bending modes below

1000 Hz). All piezoelectric cells are connected in parallel by adjacent pairs (2i − 1, 2i)

with i = 1, · · · , 5, forming five equivalent transducers. The characteristics identified

thanks to the PolyMAX method are reported in Table 9. Comparing these experimental

results with the numerical ones (Table 4), we note first that the frequencies of the

highest modes in the numerical model tend to be overestimated. This can mainly be

attributed to an imperfect clamping of finite stiffness. As similarly noted in [25], the

overall electromechanical coupling is also overestimated in the numerical model. This

discrepancy can most probably be attributed to neglected 3D piezoelectric effects [44],

as well as imperfect bonding between the patches and the beam. Nevertheless, since the

proposed method does not rely on the numerical model but rather on the identified one,
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these discrepancies do not affect the effectiveness of the different control approaches.
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Figure 16: Experimental receptance of the beam with five equivalent transducers in

open circuit (——), connected to a network (——), three decentralized networks (——)

or five shunts (——) targeting the first four modes.

Figure 16 features FRFs with groups shunted individually or interconnected via

networks. Weights w1 = 1, w2 = 0.88, w3 = 0.71 and w4 = 0.77 were selected to

replicate the numerical results with the centralization pattern depicted in Figure 2. As

expected, the fully centralized network offers the best performance, followed by the

partially decentralized case as an intermediate solution and finally by the shunts. A

strong qualitative similarity between Figures 9 and 16 is observed. Quantitatively, the

reductions predicted by the numerical model overestimate the experimental ones, which

is in direct link with the electromechanical coupling overestimation.

6. Conclusion

Shunts and networks can be used alike for effective multimodal vibration mitigation

of structures with multiple piezoelectric transducers. A unified modeling framework

and tuning procedure for these control approaches were proposed in this work. The

dynamic characteristics of passive resonant controllers were optimized to provide

effective multimodal damping. The implications of decentralization on performance were

also discussed, and it was shown that networks generally outperform shunts if multiple

modes are targeted. Both types of control approaches feature similar robustness against

frequency detuning, but networks are more sensitive to mode shapes misestimation.

DVAs were leveraged to realize the shunts and networks. The proposed tuning

approach was developed using characteristics that can be directly identified from

these DVAs. It was numerically verified on free-free and clamped-free beams, and

experimentally validated on a clamped-free beam. In all cases, the effectiveness of

the different methods was demonstrated and compared.

This work could have several potentially interesting extensions. First, a more

thorough investigation of the distribution of the modes to be controlled among the
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different transducers could be carried out. A procedure including the transducers’

positions, sizes and materials as optimization variables would be another interesting

extension to this work. The objective function could account for these parameters, but

the optimization problem would most likely require an iterative procedure. A simplified

identification procedure of the system could also be devised, in order to potentially allow

for a fully embedded approach, where the DVAs would be able to autonomously tune

themselves to control the host structure. Finally, network synthesis techniques could

be used to find actual passive electrical elements to build up the designed shunts or

networks, thereby resulting in a fully passive control solution.
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Appendix A. Mathematical proofs

Appendix A.1. Passivity constraints

The case where the piezoelectric transducers are connected to a purely passive network

is considered as a reference. This case corresponds to Gin = Gout = I. The charges and

voltages of the transducers are related by

Vp = sZn(s)qp, (A.1)

where Zn is the impedance matrix of the network. To respect the reciprocity principle,

the input and output mode shapes have to be equal. Setting them to Φp, Equation (9)

becomes

ΦT
p

(
Eε

p + sZn(s)
)
Φp = s2Ω−2

e + 2sZeΩ
−1
e + I, (A.2)

(where in this case D and Eε
p are equal owing to Equation (6)). According to Gannett

and Chua [45], the matrix Zn must fulfill the conditions

(i) Zn(s) has no poles in {s ∈ C|<(s) > 0} (< denotes the real part operator),

(ii) Zn(σ) is a real matrix for σ ∈ R+,

(iii) Zn(s) + ZH
n (s) is positive semidefinite in {s ∈ C|<(s) > 0} (superscript H denotes

Hermitian transposition),

(iv) the network associated to Zn is controllable,

in order to be the impedance matrix of a passive network. Conditions (i) and (ii)

are verified as long as the electrical mode shapes, frequencies and damping ratios are

real, and condition (iv) is verified as long as Φp is full column rank. Condition (iii)

requires further developments to be checked. In this regard, the inequality featured in



Shunts vs. networks 29

condition (iii) is projected onto the subspace spanned by Φp and Equation (A.2) is used

to yield

ΦT
p

(
Zn(s) + ZH

n (s)
)
Φp

= (s+ s∗) Ω−2
e + 4ZeΩ

−1
e +

(
1
s

+ 1
s∗

) (
I−ΦT

p Eε
pΦp

)
� 0 ∀s ∈ C|<(s) > 0,

(A.3)

where superscript ∗ denotes complex conjugation. A sufficient condition to satisfy this

inequality is to guarantee the positive semidefiniteness of matrices associated with each

power of s. For the matrices associated with s1 and s0, this implies that the electrical

frequencies and damping ratios must be positive. For the one associated with s−1, the

passivity condition reduces to

I−ΦT
p Eε

pΦp � 0. (A.4)

If the rank of Φp is equal to Np, Equation (A.3) fully constrains the impedance matrix

of the network. In the opposite case, there exists a non-empty set of orthogonal vectors

Np such that ΦT
p Np = 0. Then, to fully satisfy condition (iii), Equation (A.3) needs to

be complemented by

NT
p

(
Zn(s) + ZH

n (s)
)
Np � 0 ∀s ∈ C|<(s) > 0. (A.5)

Equation (9) does not impose any constraint on this subspace, leaving some freedom in

the design. The impedance matrix can thus be chosen to have Np as null space as well

for simplicity.

Considering now the case where Gin 6= I and Gout 6= I, it is aimed to make ZDV A

have an identical effect to the passive network characterized by Zn. From Equations (4)

and (A.1), these impedance matrices are related by

ZDV A(s) = GoutZn(s)Gin. (A.6)

With this relation, equating Equations (9) and (A.2) shows that the electrical mode

shapes Φin and Φout must be constrained to satisfy the reciprocity condition

GoutΦout = GT
inΦin = Φp. (A.7)

Multiplying Equation (A.7) by Θ and using Equation (6), one gets Equation (12). Then,

using Equations (6) and (A.7), Equation (A.4) turns to Equation (13).

The positive character of the (real) electrical resonance frequencies and damping

ratios, the full rank condition on Φin, as well as Equations (12) and (13) thus form

sufficient conditions to ensure the passivity of the emulated circuit or network.

Appendix A.2. Optimal electrical mode shapes

The terminology of Ten Berge [46] is used in this section. With the SVD of D (Equation

(30)), Equation (13) becomes

I−ΦT
inUDΣDVT

DΦout � 0. (A.8)
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Introducing the normalized mode shape matrix Ψ and diagonal scaling matrix S such

that

Φin = UDΣ
−1/2
D ΨS−1 (A.9)

Φout = VDΣ
−1/2
D ΨS, (A.10)

Equation (A.8) becomes

I− S−1ΨTΨS � 0. (A.11)

This inequality is equivalent, up to a regular similarity transformation with the matrix

S, to

I−ΨTΨ � 0. (A.12)

This inequality is satisfied if the eigenvalues of ΨTΨ, i.e., the singular values of

Ψ squared, are less than or equal to one. One thus deduces that Ψ must be

suborthonormal [46]. The set of suborthonormal matrices of arbitrary size is noted

S. Using Equations (28) and (A.10), the optimization problem then becomes

max
Ψ∈S

Tr
(
WΩ−1

oc BVDΣ
−1/2
D ΨS

)
= max

Ψ∈S
Tr
(
SWΩ−1

oc BVDΣ
−1/2
D Ψ

)
.(A.13)

We note that the latter equality, which follows from the trace properties, could also have

been derived from the fact that matrices B and C are unique up to a multiplication by

a diagonal matrix. At this point, both Ψ and S are unknown. An optimal Ψ shall first

be determined as an implicit function of S, which can be derived afterward. It is now

assumed that the matrix premultiplying Ψ admits a compact SVD decomposition given

by Equation (34) (”compact” meaning here that ΣM is a square matrix containing only

the non-zero singular values), leading to

max
Ψ∈S

Tr
(
SWΩ−1

oc BVDΣ
−1/2
D Ψ

)
= max

Ψ∈S
Tr
(
UMΣMVT

MΨ
)
. (A.14)

The suborthonormal matrix Ψ can be assumed to be the product of two suborthonormal

matrices P and Q as

Ψ = PQT , (A.15)

transforming the optimization problem to

max
P,Q∈S

Tr
(
UMΣMVT

MPQT
)

= max
P,Q∈S

Tr
(
QTUMΣMVT

MPI
)
. (A.16)

Matrices QTUM and VT
MP are suborthonormal, while matrices ΣM and I are diagonal

with positive elements. Therefore, Ten Berge’s theorem [46] can be called upon to show

that the objective function is bounded by

Tr
P,Q∈S

(
QTUMΣMVT

MPI
)
≤ Tr (ΣMI) = Tr (ΣM) . (A.17)

This maximum is reached, i.a., when QTUM = I and VT
MP = I. Given the semi-

orthonormal character of the matrices UM and VM (UT
MUM = I and VT

MVM = I),

it is thus deduced that Q = UM and P = VM constitute a (non-unique) optimal



Shunts vs. networks 31

choice. Finally, injecting this result into Equation (A.15) and back into Equations (A.9)

and (A.10), one obtains Equations (35) and (36).

Ten Berge’s inequality (Equation (A.17)) somehow sets a performance bound on

networks. Going from Equation (24) to Equation (25), the input matrix B and output

mode shapes Φout were used. Had the procedure been started from the output matrix

C and input mode shapes Φin, this upper bound would have been different, unless S

is set to make these two bounds equal (or almost equal if errors arise due to, e.g., an

imperfect experimental identification). To do so, the diagonal matrix S is selected to

minimize the Frobenius norm

S = arg min
S diagonal

∣∣∣∣∣∣SWΩ−1
oc BVDΣ

−1/2
D − S−1WΩ−1

oc CTUDΣ
−1/2
D

∣∣∣∣∣∣2 .(A.18)

The solution to the least-squares problem given in Equation (A.18) can be found to be

given by Equation (33), independently from the normalized mode shapes. This solution

also makes the error on Equation (12) minimum in the least-squares sense.

Appendix A.3. Single-mode performance independence on decentralization

To compare cases from fully centralized to fully decentralized in a coherent way, it is

assumed that the matrix D is diagonal, and thus UD = VD = I while ΣD = D. Since a

single mode is considered, the weighting coefficients on each group play no role and are

set to one for simplicity. Furthermore, the scaling matrix S(g) reduces to a scalar noted

s(g).

From Equation (48) and its unitary constraint, the explicit expression of the optimal

dimensionless mode shape on group g is(
Ψ(g)

)?
=

1∣∣∣∣∣∣∣∣(Σ
(g)
D

)−1/2 (
b

(g)
r

)T ∣∣∣∣∣∣∣∣
(
Σ

(g)
D

)−1/2 (
b(g)
r

)T
. (A.19)

Now, Equation (26) shows that the squared MEMCF of group g is(
α(g)
c

)2
=

(
s(g)

ωoc,r

b(g)
r

(
Σ

(g)
D

)−1/2 (
Ψ(g)

)?)2

=

(
s(g)

ωoc,r

)2 ∣∣∣∣∣∣∣∣b(g)
r

(
Σ

(g)
D

)−1/2
∣∣∣∣∣∣∣∣2 (A.20)

and, as indicated by Equation (24), the global squared MEMCF is given by the sum of

the squared MEMCFs of all groups

α2
c =

Ng∑
g=1

(
α(g)
c

)2
=

Ng∑
g=1

(
s(g)

ωoc,r

)2 ∣∣∣∣∣∣∣∣b(g)
r

(
Σ

(g)
D

)−1/2
∣∣∣∣∣∣∣∣2 =

1

ω2
oc,r

brΣ
−1
D cr =

1

ω2
oc,r

brD
−1cr,(A.21)

which is independent on the way the transducers are distributed among the groups (the

last two equalities are deduced using Equations (12) and (35)). Decentralization thus

has no effect when a single mode is targeted for vibration reduction.
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Figure B1: DVA architecture using Howland’s current source.

Appendix B. Digital vibration absorbers design

Figure B1 features the architecture of the DVAs used in this work. It is a slight

modification of Howland’s current source [47, 48], where the resistors labeled Rp,1 and

Rp,2 have been introduced to attenuate the high piezoelectric voltages in order to avoid

saturation of the operational amplifiers (OpAmps). This architecture was favored over

that described in [6, 41] because the latter requires floating piezoelectric electrodes,

whereas the version used herein allows for grounding one electrode of each transducer,

which was imposed by the experimental setup.

Introducing the division ratio

α =
Rp,2

Rp,1 +Rp,2

, (B.1)

the input and output voltages of OA1 are identical and are fed to the analog-to-digital

converter (ADC). They are given by

VADC = αVp. (B.2)

By introducing the amplification gain

β = 1 +
R4

R3

(B.3)

and the attenuation gain

γ =
R1

R1 +R2

, (B.4)

it is possible to show using the ideal OpAmp assumption [47] that the current injected

in the load is a function of the digital-to-analog converter (DAC) voltage as well as the

load voltage given by

q̇p =
β(1− γ)

Rs

VDAC +
(αβγ − 1)(Rp,1 +Rp,2)−Rs

Rs(Rp,1 +Rp,2)
Vp = gcVDAC + δcVp. (B.5)
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Table B1: Resistances of the DVAs used in this study.

R1 (kΩ) R2 (kΩ) R3 (kΩ) R4 (kΩ) Rs (kΩ) Rp,1 (kΩ) Rp,2 (kΩ)

10 10 10 115 2.61 49.9 10

Ideally, the current should solely be driven by VDAC and thus δc should be zero. While

the resistances can be adjusted to closely approach δc = 0, it is in general not possible

to enforce this condition exactly. It is nevertheless possible to counteract this non-ideal

behavior by simply modifying the input-output relation implemented in the digital unit.

In order to inject the current q̇Id, if instead of merely setting VDAC = q̇Id/gc (which would

be the driving law if δc = 0), the DAC voltage is given by

VDAC =
1

gc
q̇Id −

δc
gcα

VADC , (B.6)

then, by Equation (B.5), the current injected into the load is indeed q̇Id (i.e., q̇p = q̇Id).

The parameter δc/(gcα) can be determined from the resistances in the circuit and using

Equations (B.1)-(B.5). An alternative that does not require any knowledge about the

DVA parameters is to carry out a test when the load is an open circuit (q̇p = 0). Then,

by Equations (B.2) and (B.5),

VADC = αVp = −αgc
δc
VDAC . (B.7)

The parameter is thus given by the constant relation between VADC and VDAC when the

load is an open circuit.

The five DVAs used in this study were all built with identical characteristics. The

OpAmps are OPA445 from Texas Instruments [49] and the resistances are given in

Table B1.
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