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1 Introduction

The purpose of this document is to present a refined version of the tuning procedure
for a set of digital vibration absorbers (DVAs) proposed in the article ”Shunts vs.
networks: tuning and comparison of passive centralized and decentralized piezoelectric
vibration absorbers”. Specifically, this refined tuning procedure brings corrections to the
electrical resonance frequency and damping matrices in order to account for the effect
of non-resonant modes [1] (including the non-block diagonal character of the matrix D)
and sampling delays [2]. Details about the DVAs used in the experiments are also given.

This document is organized as follows. Section 2 briefly reviews the dynamics of the
electromechanical system. The refined tuning procedure is then presented in Section 3.
Finally, Section 4 presents the electrical circuit of the DVAs used in this work.

2 Dynamics of a piezoelectric structure connected

to a set of DVAs

The governing equations of a piezoelectric structure coupled to a set of DVAs are recalled
here for completeness. For the host system, they are given by$'&'%

�
s2I � Ω2

oc

�
ηoc � 1

s
BVout � ΦT

ocf

Cηoc � 1

s
DVout � Vin

, (1)

where s is Laplace’s variable, I is the identity matrix, Ω2
oc is a diagonal matrix containing

the squared resonance frequencies of the structure with open-circuited patches, ηoc is a
vector of open-circuit modal coordinates, Φoc is the open-circuit mode shapes matrix, and

B � ΘΦGout, C � GinΘ
T
Φ, D � GinE

ε
pGout, (2)



where ΘΦ is a modal electromechanical coupling matrix, Gin and Gout are matrices
representing the voltage sensors and current sources gains of the DVAs, respectively,
and Eε

p is the elastance matrix of the piezoelectric transducers at constant strain.

The DVAs are programmed to emulate a transfer function ZDV A between the
input and output of the digital unit as

Vin � ZDV ApsqVout. (3)

To provide effective multimodal control, this impedance matrix is sought to satisfy the
following relation

ΦT
in pD � sZDV ApsqqΦout � s2Ω�2

e � 2sZeΩ
�1
e � I, (4)

where Φin and Φout are electrical input and output mode shapes matrices, respectively,
and Ωe and Ze are diagonal matrices containing the electrical resonance frequencies and
damping ratios, respectively. Introducing the modal electrical coordinates ηe by

1

s
Vout � Φoutηe (5)

results in the following governing equations for the controlled system$&%
�
s2I � Ω2

oc

�
ηoc � BΦoutηe � ΦT

ocf�
s2Ω�2

e � 2sZeΩ
�1
e � I

�
ηe � ΦT

inCηoc � 0
. (6)

It is also recalled that the electrical mode shapes satisfy the reciprocity condition

BΦout � CTΦin. (7)

2.1 Discussion on the block diagonal character of the matrix D

It is now assumed that the transducers and DVAs are grouped into Ng independent groups.
Superscript pgq is used to denote the characteristics associated to group g (g � 1, � � � , Ng).

A decentralized implementation is only possible if D itself has a block diagonal structure.
It is reasonable to assume that Gin and Gout have the same block diagonal structure
since the DVAs belonging to different groups are not supposed to interact directly with
each other. Furthemore, the matrix Eε

p of the full model should be diagonal. These two
facts combined with the definition of D (Equation (2)) indeed result in a block diagonal
matrix. Eε

p might nonetheless not be diagonal when modes of higher frequency than the
bandwidth of interest are condensed to account only for their static contribution [3]. This
is the case, e.g., if a reduced-order model is used, or in experimental measurements in
general. This non-diagonality can destroy the block diagonal structure of D. However,
these effects are generally small and can be neglected at first, and will be accounted
for later as corrections when tuning the resonance frequencies and damping ratios of
the networks. Hence, D can be decomposed into

D � DBD � DND, (8)

where DBD is a block diagonal matrix whose diagonal blocks are equal to those of D, i.e.,

DBD � blkdiag
�
Dp1q , � � � , DpNgq

�
, (9)
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where Dpgq is the restriction of D to the electrical degrees of freedom of group g. DND then
contains the non-diagonal blocks (for a fully centralized network, D � Dp1q � DBD and
DND � 0). The electrical mode shapes will be tuned ignoring the latter, i.e., setting
them considering that Equation (4) is replaced by

ΦT
in pDBD � sZDV ApsqqΦout � s2Ω�2

e � 2sZeΩ
�1
e � I. (10)

However, using Equations (1), (4), (5), (8) and (10), the actual system is found
to be governed by the equations$&%

�
s2I � Ω2

oc

�
ηoc � BΦoutηe � ΦT

ocf�
s2Ω�2

e � 2sZeΩ
�1
e � ∆

�
ηe � ΦT

inCηoc � 0
, (11)

where
∆ � I � ΦT

inDNDΦout (12)

is a non-necessarily diagonal matrix with small off-diagonal terms stemming from the
neglected non-block diagonal part of D. The influence of this non-ideal term can be
accounted for when tuning the frequencies and damping ratios of the network.

2.2 Modal electromechanical coupling

The assessment procedure for the electromechanical coupling between resonant mechanical
and electrical modes is recalled here. In Equation (6), a single mechanical resonant mode
r and corresponding electrical resonant modes (distributed over the groups targeting that
mode) indexed by k are considered, while every other mode is assumed to be quiescent.
This leads to the reduced dynamical equations$&%

�
s2 � ω2

oc,r

�
ηoc,r � brΦout,kηe,k � φT

oc,rf�
s2Ω�2

e,k � 2sZe,kΩ
�1
e,k � I

�
ηe,k � ΦT

in,kcrηoc,r � 0
, (13)

where br and cr are the rth line of B and column of C, respectively. A modal
electromechanical coupling factor (MEMCF) αc,rk can then be deduced as

α2
c,rk � 1

ω2
oc,r

brΦout,kΦ
T
in,kcr. (14)

3 Tuning of centralized and decentralized absorbers

The dynamics and coupling characteristics derived in the previous section are now
exploited to tune the DVAs. Specifically, the electrical mode shapes, resonance
frequencies and damping ratios are tuned to provide effective multimodal vibration
mitigation of the controlled structure. The electrical mode shapes are first tailored
to maximize the modal electromechanical coupling. The dynamics are then simplified
to derive effective characteristics of the system around a specific resonance frequency.
These characteristics can be corrected to account for the potential effect of the delays
incurred by the sampling procedure of the digital unit. They are used to accurately
tune the electrical resonance frequencies and damping ratios. Finally, the realization
of the resulting shunt(s) and/or network(s) using DVAs is discussed.
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3.1 Optimal input and output mode shapes

The expression of the optimal electrical mode shapes is recalled here for completeness.
Let the singular value decomposition (SVD) of Dpgq be given by

Dpgq � U
pgq
D Σ

pgq
D

�
V

pgq
D

	T
. (15)

Modified input and output matrices are built as

BpgqV
pgq
D

�
Σ
pgq
D

	�1{2

�

�����
b
pgq
D,1

...

b
pgq

D,N
pgq
e

����� , �
Cpgq

�T
U

pgq
D

�
Σ
pgq
D

	�1{2

�

�����
c
pgq
D,1

...

c
pgq

D,N
pgq
e

����� , (16)

and a scaling matrix Spgq � diag
�
s
pgq
1 , � � � , spgq

N
pgq
e

	
whose elements are built from the

rows of these modified input and output matrices as

s
pgq
k �

gffe ||cpgqD,k||
||bpgq

D,k||
, k P r1, � � � , N pgq

e s. (17)

Finally, given the compact SVD

SpgqWpgqΩ�1
oc BpgqV

pgq
D

�
Σ
pgq
D

	�1{2

� U
pgq
M Σ

pgq
M

�
V

pgq
M

	T
, (18)

optimal input and output mode shapes are given by

Φ
pgq
in � U

pgq
D

�
Σ
pgq
D

	�1{2

Ψpgq
�
Spgq

��1
(19)

and

Φ
pgq
out � V

pgq
D

�
Σ
pgq
D

	�1{2

ΨpgqSpgq, (20)

respectively, with the optimal dimensionless electrical mode shape matrix

Ψpgq � V
pgq
M

�
U

pgq
M

	T
. (21)

3.2 Effective characteristics

After setting the electrical mode shapes, the resonance frequencies and damping ratios
remain to be tuned. To do so, the reduced model in Equation (13) can be complemented
to account for the influence of non-resonant modes. In particular, accounting for a
quasi-static contribution of higher-frequency modes has been shown to yield a more
accurate tuning for shunts [1, 4] and networks [3], and this approach is adopted here.
The non-block diagonal character of D can also be accounted for at this point.

Equation (11) is rewritten considering resonant mechanical (r) and electrical (k)
modes, as well as higher-frequency mechanical (¡ r) and electrical (¡ k) modes.
The latter are assumed to respond statically, i.e., terms proportional to s and s2
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governing the dynamics of these modes are neglected. It is also assumed that the
forcing effect on the non-resonant modes is negligible (in the vector ΦT

ocf , only the
element associated to mode r, φT

oc,rf , is assumed to be nonzero in the frequency range

of interest)1. The simplified governing equations now read��������s
2

��������
1 0 0 0

0 Ω�2
e,k 0 0

0 0 0 0

0 0 0 0

��������� s

��������
0 0 0 0

0 2Ze,kΩ
�1
e,k 0 0

0 0 0 0

0 0 0 0

��������

�

��������
ω2
oc,r �BrΦout,k 0 �BrΦout,¡k

�ΦT
in,kCr ∆kk �ΦT

in,kC¡r ∆k¡k

0 �B¡rΦout,k Ω2
oc,¡r �B¡rΦout,¡k

�ΦT
in,¡kCr ∆¡kk �ΦT

in,¡kC¡r ∆¡k¡k

��������

�������

��������
ηoc,r

ηe,k

ηoc,¡r

ηe,¡k

�������� �

��������
φT
oc,rf

0

0

0

�������� .
(22)

For conciseness, this system is written with symmetric electromechanical mass, damping
and stiffness matrices MEM , CEM and KEM , respectively, partitioned as follows

��s2

�� MEM
RR 0

0 0

��� s

�� CEM
RR 0

0 0

���
�� KEM

RR KEM
RB

KEM
BR KEM

BB

���
��������

ηoc,r

ηe,k

ηoc,¡r

ηe,¡k

�������� �

��������
φT
oc,rf

0

0

0

�������� ,
(23)

where subscripts R and B are used to denote resonant and background electromechanical
modes, respectively. From this equation, the higher-frequency modal coordinates can
be expressed as functions of the resonant ones by��ηoc,¡r

ηe,¡k

�� � � �KEM
BB

��1
KEM
BR

��ηoc,r
ηe,k

�� . (24)

Inserting this relation into the first lines of Equation (23) shows that the system is
governed by $&%

�
s2 � pω2

oc,r

�
ηoc,r � pbrkηe,k � φT

r f�
s2Ω�2

e,k � 2sZe,kΩ
�1
e,k � p∆k

	
ηe,k � pckrηoc,r � 0

(25)

with the effective electromechanical stiffness matrix

KEM
RR � KEM

RB

�
KEM
BB

��1
KEM
BR �

��pω2
oc,r �pbrk

�pckr
p∆k

�� . (26)

1Taking the influence of external forcing in the tuning procedure more accurately is probably
possible [5] but would be cumbersome.
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The system in Equation (25) has the same form as that in Equation (13), but the effective
characteristics in the former account for the influence of higher-frequency, non-resonant
modes, making the tuning procedure more accurate. Nevertheless, since the matrix p∆k

is not diagonal, the electrical modal coordinates ηe,k are coupled together.

Condensing the electrical response into the mechanical one, Equation (25) becomes"�
s2 � ω2

oc,r

�� pbrk �s2Ω�2
e,k � 2sZe,kΩ

�1
e,k � p∆k

	�1 pckr

*
ηoc,r � φT

oc,rf . (27)

Since Ωe,k and Ze,k are diagonal matrices, the coefficients of the latter can be chosen to
ensure proportional damping. The effective electrical modes satisfying the equations

p∆k
pΦe,k � Ω�2

e,k
pΦe,k

pΩ2
e,k,

pΦT
e,k
p∆k
pΦe,k � I (28)

can thus be used to express the response of this system through its modal expansion [6]�
s2Ω�2

e,k � 2sZe,kΩ
�1
e,k � p∆k

	�1

� pΦe,k

�
s2 pΩ�2

e,k � 2spZe,k
pΩ�1
e,k � I

	�1 pΦT
e,k, (29)

where pΦe,k, pΩe,k and pZe,k are the effective electrical mode shapes, resonance frequencies
and damping matrices, respectively. From Equations (27) and (29), it is understood that
the electromechanical coupling of these effective electrical modes is governed by the scalar
product of the effective electrical mode shapes with pckr � pbTrk. The later vectors thus
define an optimal direction that can be attributed to one of the effective electrical mode
shape, say, pφe,k, with associated effective modal characteristics pωe,k and pζe,k. With the
normalization condition given in Equation (28), this mode shape should thus be

pφe,k �
1bpbrk p∆kpckr

pckr. (30)

As shall be shown in Section 3.5, it turns out that the matrices Ωe,k and Ze,k can be
tuned to enforce these modal characteristics.

Since the matrix p∆e,k is close to the identity matrix, the normalization condition
in Equation (28) indicates that the effective electrical mode shapes are close to be

orthogonal. This means that their scalar product with pbrk and pckr can be neglected,
i.e., these modes are unobservable and uncontrollable from the perspective of the
open-circuit mode. Furthermore, the evaluation of Equation (29) at s � 0 pre- and

postmultiplied by pbrk and pckr, respectively, reveals that

pbrk pφe,k
pφT

e,kpckr � pbrk p∆�1
k pckr. (31)

Under this design choice, the system behaves like the single-degree-of-freedom
case [7]. Indeed, from Equations (27), (29) and (31), the dynamics of the resonant
open-circuit modal coordinate are given by#�

s2 � ω2
oc,r

�� pbrk p∆�1
k pckr

s2pω�2
e,k � 2spζe,kpω�1

e,k � 1

+
ηoc,r � φT

oc,rf . (32)
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3.3 Optimal electrical resonance frequencies and damping ratios

It is now possible to tune the the resonance frequencies and damping ratios of the networks
with the derived effective characteristics. The effective short-circuit resonance frequency
is accurately estimated from Equation (32) and is given by

pω2
sc,r � pω2

oc,r � pbrk p∆�1
k pckr (33)

and, combined with the effective open-circuit resonance frequency defined by
Equation (23), allows for the computation of an MEMCF as

pK2
c,rk � pω2

oc,r � pω2
sc,rpω2

sc,r

. (34)

Using the effective resonance frequency pωoc,r and the MEMCF in the optimal tuning rule
derived by Soltani et al [7, 8], an intermediate parameter given by

pre,k �
b

64 � 16 pK2
c,rk � 26 pK4

c,rk � pK2
c,rk

8
, (35)

is used to compute the optimal electrical resonant frequency and damping ratio as

pωe,k �
gffe3 pK2

c,rk � 4pre,k � 8

4 pK2
c,rk � 4

pωoc,r (36)

and

pζe,k �
c

27 pK4
c,rk � 80 pK2

c,rk � 64 � 16pre,k �4 � 3 pK2
c,rk

	
?

2
�

5 pK2
c,rk � 8

	 , (37)

respectively. These characteristics may be used to tune the electrical resonance frequency
and damping matrices. However, these characteristics may need to be modified beforehand
to account for the influence of sampling delays.

3.4 Accounting for sampling delays

It has been shown in [2] that delay-induced instabilities may arise when DVAs implement
resonant shunts, and a stabilization procedure was proposed therein. It cannot directly
be used with MIMO systems, but the procedure can be adapted to the case of networks
if all digital units work with the same sampling rate, which is a reasonable assumption in
practice. As shown in [2], the stabilization procedure becomes necessary if the sampling
period Ts exceeds a value that can be approximated by

Ts ¥
?

6

10

pK2
c,rkpω2
sc,r

. (38)

Since Section 3.2 showed that the dynamics of multiple decentralized absorbers
is equivalent to the case of a single-degree-of-freedom shunt, the problem
can be simplified. Specifically, the stabilization procedure requires to know
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the poles of the nominal controlled system. An equivalent dimensionless
single-degree-of-freedom dynamic elastance is built as

pVppqp � �s
2 � pω2

sc,r

s2 � pω2
oc,r

(39)

with the effective characteristics from Equations (26) and (33). The poles of the
closed-loop system are computed by solving

1 �
pVppqp pω2

e,k

s2 � 2pζe,kpω2
e,ks

� 0, (40)

for s. The resulting roots of this quartic equation are noted pi (i P r1, 4s). They are
used to find modification factors δω and δζ given by

��δζ
δω

�� �

���������������

� 2pζe,kpωe,k
p1 � 2pζe,kpωe,k � p1

p1 � 2pζe,kpωe,k
� 2pζe,kpωe,k
p2 � 2pζe,kpωe,k � p2

p2 � 2pζe,kpωe,k
� 2pζe,kpωe,k
p3 � 2pζe,kpωe,k � p3

p3 � 2pζe,kpωe,k
� 2pζe,kpωe,k
p4 � 2pζe,kpωe,k � p4

p4 � 2pζe,kpωe,k

���������������

:������������

1 � 1 � e�Tsp1

Tsp1

1 � 1 � e�Tsp2

Tsp2

1 � 1 � e�Tsp3

Tsp3

1 � 1 � e�Tsp4

Tsp4

������������
, (41)

where : denotes the Moore-Penrose inverse. The modified parameters rωe,k
and rζe,k are eventually given by

rωe,k � 1ap1 � δωq
pωe,k (42)

and rζe,k � p1 � δζq pζe,k (43)

(see [2] for details).

3.5 Electrical matrices

The matrices Ωe,k and Ze,k can now be tuned to enforce the effective modal

characteristics pφe,k, pωe,k and pζe,k for the electrical system in Equation (27). From
Equations (28) and (30), it is sought to enforce� p∆k � pω2

e,kΩ
�2
e,k

	pckr � 0. (44)

The unknown elements on the diagonal of Ω�2
e,k can be gathered in a vector ω�2

e,k (where
the exponent �2 has no mathematical meaning but is just used to recall the physical
meaning of the elements in this vector), i.e.,

Ω�2
e,k � diag

�
ω�2
e,k

�
. (45)
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We then note that Equation (44) can equivalently be expressed by

pω2
e,kdiag

�
ω�2
e,k

�pckr � pω2
e,kdiag ppckrqω�2

e,k � p∆kpckr. (46)

Solving for ω�2
e,k ,

ω�2
e,k �

1pω2
e,k

diag�1 ppckrq p∆kpckr, (47)

and the matrix Ω�2
e,k can be reconstructed with Equation (45). The proportional damping

matrix
Ze,k � pζe,kpωe,kΩ�1

e,k (48)

makes pζe,k the damping ratio associated with that electrical mode.

If sampling delays are to be accounted for, the modified parameters defined in
Equations (42) and (43) can be used in place of pωe,k and pζe,k in Equations (47) and (48),
respectively.

3.6 Admittance realization

The admittance can be realized with the following state-space model�� 9ηe

:ηe

�� �
�� 0 I

�Ω2
e

�
I � ΦT

inDBDΦout

� �2ΩeZe

����ηe
9ηe

���
�� 0

Ω2
eΦ

T
in

��Vin

� Ae

��ηe
9ηe

��� BeVin

Vout �
�
0 Φout

���ηe
9ηe

�� � Ce

��ηe
9ηe

��
(49)

The state-space model in Equation (49), representing the dynamic relation that
is to be emulated by the DVAs, can be simplified. This allows, i.a., to reduce
the computational burden during real-time operation. When the mode shapes
are set with the method presented herein, the matrix I � ΦT

inDBDΦout becomes
singular. Let Xs be its kernel, such that�

I � ΦT
inDBDΦout

�
Xs � 0. (50)

Then the matrix Ae is singular as well because�� 0 I

�Ω2
e

�
I � ΦT

inDBDΦout

� �2ZeΩe

����Xs

0

�� � 0. (51)

These singular modes are unobservable from the host system’s perspective since they are
also in the kernel of Ce and thus need not be kept track of. If Tr is the matrix spanning

the subspace orthogonal to
�
XT
s 0

�T
, then a reduced state-space model can be built as

Ar � TT
r AeTr, Br � TT

r Be, Cr � CeTr, (52)
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and the admittance matrix of the network is finally

Z�1
DV Apsq � Br psI � Arq�1 Cr. (53)

When the network is to be emulated by digital units, an equivalent discrete state-space
model can be obtained via Tustin’s transform.

3.7 Summary of the tuning procedure

To end this section, the proposed tuning procedure is summarized.

1. Identify a model of the structure (Equation (1)): matrices Ωoc, B, C and D.

2. Select the modes to be targeted and set the associated weights for each group Wpgq.

3. For each group, determine the optimal input and output electrical mode shapes
(Equations (15)-(21)).

4. For each targeted mechanical mode,

(a) Compute the effective characteristics accounting for non-resonant modes
(Equation (26)) and the effective MEMCF (Equations (33) and (34)).

(b) Compute the optimal effective electrical resonance frequency (Equation (36))
and damping ratio (Equation (37)).

(c) If necessary (Equation (38)), correct the effective electrical resonance frequency
and damping ratios to account for sampling delays effect (Equations (40)-(41)).

(d) Compute the electrical resonance frequency (Equations (47) and (45)) and
damping ratio (Equation (48)) matrices.

5. For each group, compute the state-space matrices in their full (Equation (49)) or
reduced (Equation (52)) form.

4 Digital vibration absorbers design

Rp,1

Rp,2

αVp

�

�

OA1

VADC

Digital unit

ADC

DAC

R2 R1

�

�

OA3
Rs

R4 R3

�

�

OA2

VDAC

Vp

9qp

Figure 1: DVA architecture using Howland’s current source.
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Figure 1 features the architecture of the DVAs used in this work. It is a slight modification
of Howland’s current source [9, 10], where the resistors labeled Rp,1 and Rp,2 have been
introduced to attenuate the high piezoelectric voltages in order to avoid saturation of the
operational amplifiers (OpAmps). This architecture was favored over the previous one
used by the authors (described in [3, 11]) because the latter requires floating piezoelectric
electrodes, whereas the version used herein allows for grounding one electrode of each
transducer, which was imposed by the experimental setup.

Introducing the division ratio

α � Rp,2

Rp,1 �Rp,2

, (54)

the input and output voltages of OA1 are identical and are fed to the analog-to-digital
converter (ADC). They are given by

VADC � αVp. (55)

By introducing the amplification gain

β � 1 � R4

R3

(56)

and the attenuation gain

γ � R1

R1 �R2

, (57)

it is possible to show using the ideal OpAmp assumption [9] that the current
injected in the load is a function of the digital-to-analog converter (DAC) voltage
as well as the load voltage given by

9qp � βp1 � γq
Rs

VDAC � pαβγ � 1qpRp,1 �Rp,2q �Rs

RspRp,1 �Rp,2q Vp � gcVDAC � δcVp. (58)

Ideally, the current should solely be driven by VDAC and thus δc should be zero. While
the resistances can be adjusted to closely approach δc � 0, it is in general not possible
to enforce this condition exactly. It is nevertheless possible to counteract this non-ideal
behavior by simply modifying the input-output relation implemented in the digital unit.
In order to inject the current 9qId, if instead of merely setting VDAC � 9qId{gc (which would
be the driving law if δc � 0), the DAC voltage is given by

VDAC � 1

gc
9qId � δc

gcα
VADC , (59)

then, by Equation (58), the current injected into the load is indeed 9qId (i.e., 9qp � 9qId).
To determine the parameter δc{pgcαq, a simple test can be carried out when the load is
an open circuit ( 9qp � 0). Then, by Equations (55) and (58),

VADC � αVp � �αgc
δc
VDAC . (60)

The parameter is thus given by the constant relation between VADC and VDAC
when the load is an open-circuit.

The five DVAs used in this study were all built with identical characteristics. The OpAmps
are OPA445 from Texas Instruments [12] and the resistances are given in Table 1.
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R1 (kΩ) R2 (kΩ) R3 (kΩ) R4 (kΩ) Rs (kΩ) Rp,1 (kΩ) Rp,2 (kΩ)

10 10 10 115 2.61 49.9 10

Table 1: Resistances of the DVAs used in this study.
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