[en] Metallo-β-lactamases (MBLs) represent an increasingly serious threat to public health because of their increased prevalence worldwide in relevant opportunistic Gram-negative pathogens. MBLs efficiently inactivate widely used and most valuable β-lactam antibiotics, such as oxyiminocephalosporins (ceftriaxone, ceftazidime) and the last-resort carbapenems. To date, no MBL inhibitor has been approved for therapeutic applications. We are developing inhibitors characterized by a 1,2,4-triazole-3-thione scaffold as an original zinc ligand and few promising series were already reported. Here, we present the synthesis and evaluation of a new series of compounds characterized by the presence of an arylalkyl substituent at position 4 of the triazole ring. The alkyl link was mainly an ethylene, but a few compounds without alkyl or with an alkyl group of various lengths up to a butyl chain were also synthesized. Some compounds in both sub-series were micromolar to submicromolar inhibitors of tested VIM-type MBLs. A few of them were broad-spectrum inhibitors, as they showed significant inhibitory activity on NDM-1 and, to a lesser extent, IMP-1. Among these, several inhibitors were able to significantly reduce the meropenem MIC on VIM-1- and VIM-4- producing clinical isolates by up to 16-fold. In addition, ACE inhibition was absent or moderate and one promising compound did not show toxicity toward HeLa cells at concentrations up to 250 μM. This series represents a promising basis for further exploration. Finally, molecular modelling of representative compounds in complex with VIM-2 was performed to study their binding mode.
Disciplines :
Microbiology Biochemistry, biophysics & molecular biology Life sciences: Multidisciplinary, general & others
Author, co-author :
Gavara, Laurent; Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France. Electronic address: laurent.gavara@umontpellier.fr
Verdirosa, Federica; Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy
Sevaille, Laurent; Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
Legru, Alice; Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
Corsica, Giuseppina; Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy
Nauton, Lionel; Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, CNRS, Clermont-Ferrand, France
Mercuri, Paola ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Sannio, Filomena; Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy
De Luca, Filomena; Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy
Hadjadj, Margot; Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
Cerboni, Giulia; Dipartimento di Biotecnologie Mediche, Università di Siena, I-53100 Siena, Italy
Vo Hoang, Yen; Institut des Biomolécules Max Mousseron, Univ Montpellier, CNRS, ENSCM, Montpellier, France
Licznar-Fajardo, Patricia; HSM, Univ Montpellier, CNRS, IRD, CHU Montpellier, France
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Part of this work was supported by Agence Nationale de la Recherche (ANR-14-CE16-0028-01, including fellowship to L.S.). We thank Mr Pierre Sanchez for mass spectrometry analyses.
Nordmann, P., Naas, T., Poirel, L., Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17 (2011), 1791–1798, 10.3201/eid1710.110655.
Walsh, T.R., Toleman, M.A., The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. J Antimicrob Chemother 67 (2012), 1–3, 10.1093/jac/dkr378.
Reygaert, W.C., An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 4 (2018), 482–501, 10.3934/microbiol.2018.3.482.
World Health Organization, Global priority list of antibiotic-resistant bacteria to guide research, discovery and development of new antibiotics, 27 february 2017.
Tooke, C.L., Hinchliffe, P., Bragginton, E.C., et al. β-Lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 431 (2019), 3472–3500, 10.1016/j.jmb.2019.04.002.
Bush, K., Past and present perspectives on β-lactamases. Antimicrob Agents Chemother 62 (2018), e01076–e10118, 10.1128/AAC.01076-18.
Bahr, G., Gonzalez, L.J., Vila, A.J., Metallo-β-lactamase inhibitors in the age of multidrug resistance: from structure and mechanism to evolution, dissemination, and inhibitor design. Chem Rev 121 (2021), 7957–8094, 10.1021/acs.chemrev.1c00138.
Palzkill, T., Metallo-β-lactamase structure and function. Ann N Y Acad Sci 1277 (2013), 91–104, 10.1111/j.1749-6632.2012.06796.x.
Gajamer, V.R., Bhattacharjee, A., Paul, D., et al. Escherichia coli encoding blaNDM-5 associated with community-acquired urinary tract infections with unusual MIC creep-like phenomenon against imipenem. J Glob Antimicrob Resist 14 (2018), 228–232, 10.1016/j.jgar.2018.05.004.
Docquier, J.-D., Mangani, S., An update on β-lactamase inhibitor discovery and development. Drug Resist Updat. 36 (2018), 13–29, 10.1016/j.drup.2017.11.002.
Gonzalez-Bello, C., Rodriguez, D., Pernas, M., Rodriguez, A., Colchon, E., β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J Med Chem 63 (2020), 1859–1881, 10.1021/acs.jmedchem.9b01279.
McGeary, R.P., Tan, D.T., Schenk, G., Progress toward inhibitors of metallo-β-lactamases. Future Med Chem 9 (2017), 673–691, 10.4155/fmc-2017-0007.
Palacios, A.R., Rossi, M.-A., Mahler, G.S., Vila, A.J., Metallo-β-lactamase inhibitors inspired on snapshots from the catalytic mechanism. Biomolecules, 10, 2020, 854, 10.3390/biom10060854.
Yan, Y.-H., Li, G., Li, G.-B., Principles and current strategies targeting metallo-β-lactamases mediated antibacterial resistance. Med Res Rev 40 (2020), 1558–1592, 10.1002/med.21665.
Liénard, B.M., Garau, G., Horsfall, L., et al. Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Org Biomol Chem 6 (2008), 2282–2294, 10.1039/b802311e.
Lassaux, P., Hamel, M., Gulea, M., et al. Mercaptophosphonate compounds as broad-spectrum inhibitors of the metallo-β-lactamases. J Med Chem 53 (2010), 4862–4876, 10.1021/jm100213c.
Gonzalez, M.M., Kosmopoulou, M., Mojica, M.F., et al. Bisthiazolidines: a substrate-mimicking scaffold as an inhibitor of the NDM-1 carbapenemase. ACS Inf Dis. 1 (2015), 544–554, 10.1021/acsinfecdis.5b00046.
Kaya, C., Konstantinović, J., Kany, A.M., et al. N-Aryl mercaptopropionamides as broad-spectrum inhibitors of metallo-β-lactamases. J Med Chem 65 (2022), 3913–3922, 10.1021/acs.jmedchem.1c01755.
Toney, J.H., Hammond, G.G., Fitzgerald, P.M., et al. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-β-lactamase. J Biol Chem 276 (2001), 31913–31918, 10.1074/jbc.M104742200.
Chen, A.Y., Thomas, P.W., Stewart, A.C., et al. Dipicolinic acid derivatives as inhibitors of New Delhi Metallo-β-lactamase-1. J Med Chem 60 (2017), 7267–7283, 10.1021/acs.jmedchem.7b00407.
King, A.M., Reid-Yu, S.A., Wang, W., et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510 (2014), 503–506, 10.1038/nature13445.
Bergstrom, A., Katko, A., Adkins, Z., et al. Probing the interaction of aspergillomarasmine A with metallo-β-lactamase NDM-1, VIM-2, and IMP-7. ACS Infect Dis 4 (2018), 135–145, 10.1021/acsinfecdis.7b00106.
Samuelsen, O., Astrand, O.A.H., Fröhlich, C., et al. ZN148 is a modular synthetic metallo-β-lactamase inhibitor that reverses carbapenem-resistance in Gram-negative pathogens in vivo. Antimicrob Agents Chemother 64 (2020), e02415–e2509, 10.1128/AAC.02415-19.
Reddy, N., Shungube, M., Arvidsson, P.I., et al. A 2018–2019 patent review of metallo-β-lactamase inhibitors. Expert Opin Ther Pat 30 (2020), 541–555, 10.1080/13543776.2020.1767070.
Davies, D.T., Leiris, S., Sprynski, N., et al. ANT2681: SAR studies leading to the identification of a metallo-lactamase inhibitor with potential for clinical use in combination with meropenem for the treatment of infections caused by NDM-producing Enterobacteriaceae. ACS Infect Dis 6 (2020), 2419–2430, 10.1021/acsinfecdis.0c00207.
Burns, C.J., Daigle, D., Liu, B., McGarry, D., Pevear, D.C., Trout, R.E., β-Lactamase inhibitors. WO Patent WO, 2014, 089365A1.
Krajnc, A., Brem, J., Hinchliffe, P., et al. Bicyclic boronate VNRX-5133 inhibits metallo- and serine β-lactamases. J Med Chem 62 (2019), 8544–8556, 10.1021/acs.jmedchem.9b00911.
Liu, B., Trout, R.E.L., Chu, G.H., et al. Discovery of Taniborbactam (VNRX-5133): a broad spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem 63 (2020), 2789–2801, 10.1021/acs.jmedchem.9b01518.
Hamrick, J.C., Docquier, J.D., Uehara, T., et al. VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine- and metallo-β-lactamase, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother 64 (2020), e01963–e2019, 10.1128/AAC.01963-19.
Hecker, S.J., Reddy, K.R., Lomovskaya, O., et al. Discovery of cyclic boronic acid QPX7728, an ultra-broad-spectrum inhibitor of serine and metallo-β-lactamases. J Med Chem 63 (2020), 7491–7507, 10.1021/acs.jmedchem.9b01976.
Olsen, L., Jost, S., Adolph, H.W., Pettersson, I., Hemmingsen, L., Jørgensen, F.S., New leads of metallo-β-lactamase inhibitors from structure-based pharmacophore design. Bioorg Med Chem 14 (2006), 2627–2635, 10.1016/j.bmc.2005.11.046.
Toney, J.H., Fitzgerald, P.M., Grover-Sharma, N., et al. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. Chem Biol 5 (1998), 185–196, 10.1016/s1074-5521(98)90632-9.
Hussein, W.M., Fatahala, S.S., Mohamed, Z.M., et al. Synthesis and kinetic testing of tetrahydropyrimidine-2-thione and pyrrole derivatives as inhibitors of the metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Chem Biol Drug Des 80 (2012), 500–515, 10.1111/j.1747-0285.2012.01440.x.
Zhai, L., Zhang, Y.L., Kang, J.S., et al. Triazolylthioacetamide: a valid scaffold for the development of New Delhi Metallo-β-Lactamase-1 (NDM-1) inhibitors. ACS Med Chem Lett 7 (2016), 413–417, 10.1021/acsmedchemlett.5b00495.
Muhammad, Z., Skagseth, S., Boomgaren, M., et al. Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Bioorg Med Chem, 28, 2020, 115598, 10.1016/j.bmc.2020.115598.
Nauton, L., Kahn, R., Garau, G., Hernandez, J.-F., Dideberg, O., Structural insights into the design of inhibitiors of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia. J Mol Biol 375 (2008), 257–269, 10.1016/j.jmb.2007.10.036.
Christopeit, T., Carlsen, T.J., Helland, R., Leiros, H.K., Discovery of novel inhibitor scaffolds against the metallo-β-lactamase VIM-2 by surface plasmon resonance (SPR) based fragment screening. J Med Chem 58 (2015), 8671–8682, 10.1021/acs.jmedchem.5b01289.
Gavara, L., Sevaille, L., De Luca, F., et al. 4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors. Eur J Med Chem, 208, 2020, 112720, 10.1016/j.ejmech.2020.112720.
Spyrakis, F., Santucci, M., Maso, L., et al. Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Sci Rep, 10, 2020, 12763, 10.1038/s41598-020-69431-y.
Legru, A., Verdirosa, F., Hernandez, J.-F., et al. 1,2,4-Triazole-3-thione compounds with a 4-ethyl alkyl/aryl sulfide substituent are broad-spectrum metallo-β-lactamase inhibitors with re-sensitization activity. Eur J Med Chem, 226, 2021, 113873, 10.1016/j.ejmech.2021.113873.
Vella, P., Hussein, W.M., Leung, E.W., et al. The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg Med Chem Lett 21 (2011), 3282–3285, 10.1016/j.bmcl.2011.04.027.
Spyrakis, F., Celenza, G., Marcoccia, F., et al. Structure-based virtual screening for the discovery of novel inhibitors of New Delhi Metallo-β-lactamase-1. ACS Med Chem Lett 9 (2018), 45–50, 10.1021/acsmedchemlett.7b00428.
Gavara, L., Verdirosa, F., Legru, A., et al. 4-(N-Alkyl- and -acyl-amino)-1,2,4-triazole-3-thione analogs as metallo-β-lactamase inhibitors: impact of 4-linker on potency and spectrum of inhibition. Biomolecules, 10, 2020, 1094, 10.3390/biom10081094.
Gavara, L., Legru, A., Verdirosa, F., et al. 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. Bioorg Chem, 113, 2021, 105024, 10.1016/j.bioorg.2021.105024.
Verdirosa, F., Gavara, L., Sevaille, L., et al. 1,2,4-Triazole-3-thione analogues with a 2-ethylbenzoic acid at position 4 as VIM-type metallo-β-lactamase inhibitors. ChemMedChem, 17, 2022, e202100699, 10.1002/cmdc.202100699.
Deprez-Poulain, R.F., Charton, J., Leroux, V., Deprez, B.P., Convenient synthesis of 4H–1,2,4-triazole-3-thiols using di-2-pyridylthionocarbamate. Tetrahedron Lett 48 (2007), 8157–8162, 10.1016/j.tetlet.2007.09.094.
Sevaille, L., Gavara, L., Bebrone, C., et al. 1,2,4-Triazole-3-thione compounds as inhibitors of dizinc metallo-β-lactamase. ChemMedChem 12 (2017), 972–985, 10.1002/cmdc.201700186.
Akiyama, T., Hirofuji, H., Ozaki, S., AlCl3-N, N-dimethylaniline: a new benzyl and allyl ether cleavage reagent. Tetrahedron Lett 32 (1991), 1321–1324, 10.1016/S0040-4039(00)79656-0.
Negash, K.H., Norris, J.K.S., Hodgkinson, J.T., Siderophore-antibiotic conjugate design: new drugs for bad bugs?. Molecules, 24, 2019, 3314, 10.3390/molecules24183314.
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). EUCAST Definitive Document E.Def 1.2. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin Microb Infect. 2000; 6: 503-508. DOI: 10.1046/j.1469-0691.2000.00149.x.
Sentandreu, M.A., Toldrá, F., A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem 97 (2006), 546–554, 10.1016/j.foodchem.2005.06.006.
Eberhardt, J., Santos-Martins, D., Tillack, A.F., Forli, S., AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model 61 (2021), 3891–3898, 10.1021/acs.jcim.1c00203.
Christopeit, T., Yang, K.W., Yang, S.K., Leiros, H.K.S., The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor. Acta Crystallogr. F 72 (2016), 813–819, 10.1107/S2053230X16016113.
Pettersen, E.F., Goddard, T.D., Huang, C.C., et al. UCSF Chimera, a visualization system for exploratory research and analysis. J Comput Chem 25 (2004), 1605–1612, 10.1002/jcc.20084.
Docquier, J.-D., Lamotte-Brasseur, J., Galleni, M., Amicosante, G., Frère, J.-M., Rossolini, G.M., On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J Antimicrob Chemother 51 (2003), 257–266, 10.1093/jac/dkg067.
Clinical Laboratory Standard Institute, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, Document M07-A10, 2015, Twelfth Edition, Wayne, PA, USA.
Sentandreu, M.A., Toldrá, F., A fluorescence-based protocol for quantifying angiotensin-converting enzyme activity. Nat Protoc 1 (2006), 2423–2427, 10.1038/nprot.2006.349.
Carmel, A., Yaron, A., An intramolecularly quenched fluorescent tripeptide as a fluorogenic substrate of angiotensin-I-converting enzyme and of bacterial dipeptidyl carboxypeptidase. Eur J Biochem 87 (1978), 265–273, 10.1111/j.1432-1033.1978.tb12375.x.
Sanner, M.F., Python: a programming language for software integration and development. J Mol Graph Model 17 (1999), 57–61 PMID: 10660911.