[en] Computational modeling can be used to investigate complex signaling networks in biology. However, most modeling tools are not suitable for molecular cell biologists with little background in mathematics. We have built a visual-based modeling tool for the investigation of dynamic networks. Here, we describe the development of computational models of cartilage development and osteoarthritis, in which a panel of relevant signaling pathways are integrated. In silico experiments give insight in the role of each of the pathway components and reveal which perturbations may deregulate the basal healthy state of cells and tissues. We used a previously developed computational modeling tool Analysis of Networks with Interactive Modeling (ANIMO) to generate an activity network integrating 7 signal transduction pathways resulting in a network containing over 50 nodes and 200 interactions. We performed in silico experiments to characterize molecular mechanisms of cell fate decisions. The model was used to mimic biological scenarios during cell differentiation using RNA-sequencing data of a variety of stem cell sources as input. In a case-study, we wet-lab-tested the model-derived hypothesis that expression of DKK1 (Dickkopf-1) and FRZB (Frizzled related protein, WNT antagonists) and GREM1 (gremlin 1, BMP antagonist) prevents IL1β (Interleukin 1 beta)-induced MMP (matrix metalloproteinase) expression, thereby preventing cartilage degeneration, at least in the short term. We found that a combination of DKK1, FRZB and GREM1 may play a role in modulating the effects of IL1β induced inflammation in human primary chondrocytes.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Schivo, Stefano ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Department of Developmental BioEngineering, Technical Medicine Centre, University
Khurana, Sakshi; Department of Developmental BioEngineering, Technical Medicine Centre, University
Govindaraj, Kannan; Department of Developmental BioEngineering, Technical Medicine Centre, University
Scholma, Jetse; Department of Developmental BioEngineering, Technical Medicine Centre, University
Kerkhofs, Johan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven,
Zhong, Leilei; Department of Developmental BioEngineering, Technical Medicine Centre, University
Huang, Xiaobin; Department of Developmental BioEngineering, Technical Medicine Centre, University
van de Pol, Jaco; Department of Formal Methods and Tools, CTIT institute, University of Twente,
Langerak, Rom; Department of Formal Methods and Tools, CTIT institute, University of Twente,
van Wijnen, André J; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Prometheus, the Leuven R&D division of skeletal tissue engineering, KU Leuven,
Karperien, Marcel; Department of Developmental BioEngineering, Technical Medicine Centre, University
Post, Janine N; Department of Developmental BioEngineering, Technical Medicine Centre, University
Rabenda, V., Manette, C., Lemmens, R., Mariani, A.M., Struvay, N., Reginster, J.Y., Prevalence and impact of osteoarthritis and osteoporosis on health-related quality of life among active subjects. Aging Clin. Exp. Res. 19:1 (2007), 55–60.
Leijten, J.C., Emons, J., Sticht, C., van Gool, S., Decker, E., Uitterlinden, A., Rappold, G., Hofman, A., Rivadeneira, F., Scherjon, S., Wit, J.M., van Meurs, J., van Blitterswijk, C.A., Karperien, M., Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum. 64:10 (2012), 3302–3312.
Ma, B., Landman, E.B.M., Miclea, R.L., Wit, J.M., Robanus-Maandag, E.C., Post, J.N., Karperien, M., WNT signaling and cartilage: of mice and men. Calcif. Tissue Int. 92:5 (2013), 399–411.
Ma, B., Leijten, J.C., Wu, L., Kip, M., van Blitterswijk, C.A., Post, J.N., Karperien, M., Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr. Cartil. 21:4 (2013), 599–603.
Ma, B., van Blitterswijk, C.A., Karperien, M., A Wnt/beta-catenin negative feedback loop inhibits interleukin-1-induced matrix metalloproteinase expression in human articular chondrocytes. Arthritis Rheum. 64:8 (2012), 2589–2600.
Ma, B., Zhong, L., van Blitterswijk, C.A., Post, J.N., Karperien, M., Cell Factor, T., 4 is a pro-catabolic and apoptotic factor in human articular chondrocytes by potentiating nuclear factor kappaB signaling. J. Biol. Chem. 288:24 (2013), 17552–17558.
Wu, L., Leijten, J., van Blitterswijk, C.A., Karperien, M., Fibroblast growth Factor-1 is a mesenchymal stromal cell-secreted factor stimulating proliferation of osteoarthritic chondrocytes in co-culture. Stem Cells Dev. 22:17 (2013 Sep 1), 2356–2367.
Wu, L., Leijten, J.C.H., Georgi, N., Post, J.N., van Blitterswijk, C.A., Karperien, M., Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng. Pt. A 17:9–10 (2011), 1425–1436.
Zhong, L., Huang, X., Karperien, M., Post, J.N., The regulatory role of Signaling crosstalk in hypertrophy of MSCs and human articular chondrocytes. Int. J. Mol. Sci. 16:8 (2015), 19225–19247.
Clevers, H., Nusse, R., Wnt/beta-catenin signaling and disease. Cell 149:6 (2012), 1192–1205.
Jikko, A., Kato, Y., Hiranuma, H., Fuchihata, H., Inhibition of chondrocyte terminal differentiation and matrix calcification by soluble factors released by articular chondrocytes. Calcif. Tissue Int. 65:4 (1999), 276–279.
Blanke, M., Carl, H.D., Klinger, P., Swoboda, B., Hennig, F., Gelse, K., Transplanted chondrocytes inhibit endochondral ossification within cartilage repair tissue. Calcif. Tissue Int. 85:5 (2009), 421–433.
Fischer, J., Dickhut, A., Rickert, M., Richter, W., Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis. Arthritis Rheum. 62:9 (2010), 2696–2706.
Gelse, K., Ekici, A.B., Cipa, F., Swoboda, B., Carl, H.D., Olk, A., Hennig, F.F., Klinger, P., Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype. Osteoarthr. Cartil. 20:2 (2012), 162–171.
van der Kraan, P.M., van den Berg, W.B., Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?. Osteoarthr. Cartil. 20:3 (2012), 223–232.
Leijten, J.C.H., Bos, S.D., Landman, E.B., Georgi, N., Jahr, H., Meulenbelt, I., Post, J.N., van Blitterswijk, C., Karperien, M., GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis associated factors. Arthritis Res. Ther., 15, 2013, R126.
Goldring, M.B., Tsuchimochi, K., Ijiri, K., The control of chondrogenesis. J. Cell. Biochem. 97:1 (2006), 33–44.
Cheng, A., Genever, P.G., SOX9 determines RUNX2 transactivity by directing intracellular degradation. J. Bone Miner. Res. 25:12 (2010), 2680–2689.
Mackie, E.J., Ahmed, Y.A., Tatarczuch, L., Chen, K.S., Mirams, M., Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 40:1 (2008), 46–62.
Janes, K.A., Albeck, J.G., Gaudet, S., Sorger, P.K., Lauffenburger, D.A., Yaffe, M.B., A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:5754 (2005), 1646–1653.
Lenas, P., Moos, M., Luyten, F.P., Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Eng. B Rev. 15:4 (2009), 395–422.
Reisig, W., Modeling in Systems Biology. 2011, Springer London, London.
Schivo, S., Scholma, J., Wanders, B., Camacho, R.A.U., van der Vet, P.E., Karperien, M., Langerak, R., van de Pol, J., Post, J.N., Modelling biological pathway dynamics with timed automata. IEEE 12th International Conference on Bioinformatics & Bioengineering, 2012, 447–453.
S. Schivo, J. Scholma, B. Wanders, R.A.U. Camacho, P.E. van der Vet, M. Karperien, R. Langerak, J. van de Pol, J.N. Post, ANIMO 2012. (Accessed 20130823 2013) https://fmt.cs.utwente.nl/tools/animo/.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:11 (2003), 2498–2504.
Bartocci, E., Corradini, F., Merelli, E., Tesei, L., Model checking biological oscillators. Electron. Notes Theor. Comput. Sci. 229:1 (2009), 41–58.
David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z., Time for statistical model checking of real-time systems. Computer Aided Verification, 2011, Springer, 349–355.
Langerak, R., van de pol, J., Post, J.N., Schivo, S., Improving the timed automata approach to biological pathway dynamics. Aceto, L., Bacci, G., Bacci, G., Ingolfsdottir, A., Legay, A., Mardare, R., (eds.) Lecture Notes in Computer ScienceModels, Algorithms, Logics and Tools, 2017, Springer, Cham.
Goldring, M.B., Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskeletal Dis. 4:4 (2012), 269–285.
Onyekwelu, I., Goldring, M.B., Hidaka, C., Chondrogenesis, joint formation, and articular cartilage regeneration. J. Cell. Biochem. 107:3 (2009), 383–392.
Nishimura, R., Hata, K., Nakamura, E., Murakami, T., Takahata, Y., Transcriptional network systems in cartilage development and disease. Histochem. Cell Biol. 149:4 (2018), 353–363.
Saito, T., Ikeda, T., Nakamura, K., Chung, U.I., Kawaguchi, H., S100A1 and S100B, transcriptional targets of SOX trio, inhibit terminal differentiation of chondrocytes. EMBO Rep. 8:5 (2007), 504–509.
Yoshida, C.A., Yamamoto, H., Fujita, T., Furuichi, T., Ito, K., Inoue, K., Yamana, K., Zanma, A., Takada, K., Ito, Y., Komori, T., Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev. 18:8 (2004), 952–963.
Kerkhofs, J., Leijten, J., Bolander, J., Luyten, F.P., Post, J.N., Geris, L., A qualitative model of the differentiation network in chondrocyte maturation: a holistic view of chondrocyte hypertrophy. PLoS One, 11(8), 2016, e0162052.
Kerkhofs, J., Roberts, S.J., Luyten, F.P., Van Oosterwyck, H., Geris, L., Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype. PLoS One, 7(4), 2012, e34729.
Holleville, N., Mateos, S., Bontoux, M., Bollerot, K., Monsoro-Burq, A.H., Dlx5 drives Runx2 expression and osteogenic differentiation in developing cranial suture mesenchyme. Dev. Biol. 304:2 (2007), 860–874.
Chin, H.J., Fisher, M.C., Li, Y., Ferrari, D., Wang, C.K., Lichtler, A.C., Dealy, C.N., Kosher, R.A., Studies on the role of Dlx5 in regulation of chondrocyte differentiation during endochondral ossification in the developing mouse limb. Develop. Growth Differ. 49:6 (2007), 515–521.
Amano, K., Ichida, F., Sugita, A., Hata, K., Wada, M., Takigawa, Y., Nakanishi, M., Kogo, M., Nishimura, R., Yoneda, T., MSX2 stimulates chondrocyte maturation by controlling Ihh expression. J. Biol. Chem. 283:43 (2008), 29513–29521.
Nishimura, R., Hata, K., Matsubara, T., Wakabayashi, M., Yoneda, T., Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J. Biochem. 151:3 (2012), 247–254.
Muraglia, A., Perera, M., Verardo, S., Liu, Y., Cancedda, R., Quarto, R., Corte, G., DLX5 overexpression impairs osteogenic differentiation of human bone marrow stromal cells. Eur. J. Cell Biol. 87:10 (2008), 751–761.
Shu, B., Zhang, M., Xie, R., Wang, M., Jin, H., Hou, W., Tang, D., Harris, S.E., Mishina, Y., O'Keefe, R.J., Hilton, M.J., Wang, Y., Chen, D., BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J. Cell Sci. 124:20 (2011), 3428–3440.
Blaney Davidson, E.N., Vitters, E.L., Bennink, M.B., van Lent, P.L., van Caam, A.P., Blom, A.B., van den Berg, W.B., van de Loo, F.A., van der Kraan, P.M., Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Ann. Rheum. Dis. 74:6 (2015), 1257–1264.
Longobardi, L., O'Rear, L., Aakula, S., Johnstone, B., Shimer, K., Chytil, A., Horton, W.A., Moses, H.L., Spagnoli, A., Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J. Bone Miner. Res. 21:4 (2006), 626–636.
Dudakovic, A., Camilleri, E., Riester, S.M., Lewallen, E.A., Kvasha, S., Chen, X., Radel, D.J., Anderson, J.M., Nair, A.A., Evans, J.M., Krych, A.J., Smith, J., Deyle, D.R., Stein, J.L., Stein, G.S., Im, H.J., Cool, S.M., Westendorf, J.J., Kakar, S., Dietz, A.B., van Wijnen, A.J., High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. J. Cell. Biochem. 115:10 (2014), 1816–1828.
Lewallen, E.A., Bonin, C.A., Li, X., Smith, J., Karperien, M., Larson, A.N., Lewallen, D.G., Cool, S.M., Westendorf, J.J., Krych, A.J., Leontovich, A.A., Im, H.J., van Wijnen, A.J., The synovial microenvironment of osteoarthritic joints alters RNA-seq expression profiles of human primary articular chondrocytes. Gene 591:2 (2016), 456–464.
Lin, Y., Lewallen, E.A., Camilleri, E.T., Bonin, C.A., Jones, D.L., Dudakovic, A., Galeano-Garces, C., Wang, W., Karperien, M.J., Larson, A.N., Dahm, D.L., Stuart, M.J., Levy, B.A., Smith, J., Ryssman, D.B., Westendorf, J.J., Im, H.J., van Wijnen, A.J., Riester, S.M., Krych, A.J., RNA-seq analysis of clinical-grade osteochondral allografts reveals activation of early response genes. J. Orthop. Res. 34:11 (2016), 1950–1959.
Wu, L., Cai, X., Zhang, S., Karperien, M., Lin, Y., Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine. J. Cell. Physiol. 228:5 (2013), 938–944.
Cheng, A., Kapacee, Z., Peng, J., Lu, S., Lucas, R.J., Hardingham, T.E., Kimber, S.J., Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl. Med. 3:11 (2014), 1287–1294.
Leijten, J.C., Georgi, N., Wu, L., van Blitterswijk, C.A., Karperien, M., Cell sources for articular cartilage repair strategies: shifting from monocultures to cocultures. Tissue Eng. B Rev. 19:1 (2013), 31–40.
Pagani, S., Borsari, V., Veronesi, F., Ferrari, A., Cepollaro, S., Torricelli, P., Filardo, G., Fini, M., Increased chondrogenic potential of mesenchymal cells from adipose tissue versus bone marrow-derived cells in osteoarthritic in vitro models. J. Cell. Physiol. 232:6 (2017), 1478–1488.
Dong, Y.F., Soung do, Y., Schwarz, E.M., O'Keefe, R.J., Drissi, H., Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J. Cell. Physiol. 208:1 (2006), 77–86.
Zhong, L., Huang, X., Karperien, M., Post, J.N., Correlation between gene expression and osteoarthritis progression in human. Int. J. Mol. Sci., 17(7), 2016.
Wojdasiewicz, P., Poniatowski, L.A., Szukiewicz, D., The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm., 2014, 2014, 561459.
Zhong, L., Schivo, S., Huang, X., Leijten, J., Karperien, M., Post, J.N., Nitric oxide mediates crosstalk between interleukin 1beta and WNT Signaling in primary human chondrocytes by reducing DKK1 and FRZB expression. Int. J. Mol. Sci., 18(11), 2017.
Kobayashi, M., Squires, G.R., Mousa, A., Tanzer, M., Zukor, D.J., Antoniou, J., Feige, U., Poole, A.R., Role of interleukin-1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 52:1 (2005), 128–135.
Govindaraj, K., Hendriks, J., Lidke, D.S., Karperien, M., Post, J.N., Changes in fluorescence recovery after Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity. Biochim. Biophys. Acta Gene Regul. Mech. 1862:1 (2019), 107–117.
van Gool, S.A., Emons, J.A., Leijten, J.C., Decker, E., Sticht, C., van Houwelingen, J.C., Goeman, J.J., Kleijburg, C., Scherjon, S.A., Gretz, N., Wit, J.M., Rappold, G., Post, J.N., Karperien, M., Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage. PLoS One, 7(11), 2012, e44561.
Kerkhofs, J., Geris, L., A Semiquantitative framework for gene regulatory networks: increasing the time and quantitative resolution of Boolean networks. PLoS One, 10(6), 2015, e0130033.
Ripmeester, E.G.J., Timur, U.T., Caron, M.M.J., Welting, T.J.M., Recent insights into the contribution of the changing hypertrophic chondrocyte phenotype in the development and progression of osteoarthritis. Front. Bioeng. Biotechnol., 6, 2018, 18.
Garrison, P., Yue, S., Hanson, J., Baron, J., Lui, J.C., Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage. PLoS One, 12(5), 2017, e0176752.
Jing, J., Hinton, R.J., Mishina, Y., Liu, Y., Zhou, X., Feng, J.Q., Critical role of Bmpr1a in mandibular condyle growth. Connect. Tissue Res. 55:Suppl. 1 (2014), 73–78.
Jing, J., Ren, Y., Zong, Z., Liu, C., Kamiya, N., Mishina, Y., Liu, Y., Zhou, X., Feng, J.Q., BMP receptor 1A determines the cell fate of the postnatal growth plate. Int. J. Biol. Sci. 9:9 (2013), 895–906.
Yoon, B.S., Ovchinnikov, D.A., Yoshii, I., Mishina, Y., Behringer, R.R., Lyons, K.M., Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Natl. Acad. Sci. U. S. A. 102:14 (2005), 5062–5067.
Huang, X., Post, J.N., Zhong, L., Leijten, J.C.H., Larsson, S., Karperien, M., Struglics, A., Dickkopf-related protein 1 and gremlin 1 show different response than frizzled-related protein in human synovial fluid following knee injury and in patients with osteoarthritis. Osteoarthr. Cartil. 26:6 (2018), 834–843.
Marcu, K.B., Otero, M., Olivotto, E., Borzi, R.M., Goldring, M.B., NF-kappaB signaling: multiple angles to target OA. Curr. Drug Targets 11:5 (2010), 599–613.
Zhong, H., Ding, Q., Chen, W., Luo, R., Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-κB nuclear translocation. Int. Immunopharmacol. 17:2 (2013), 329–335.
Mueller, M.B., Blunk, T., Appel, B., Maschke, A., Goepferich, A., Zellner, J., Englert, C., Prantl, L., Kujat, R., Nerlich, M., Angele, P., Insulin is essential for in vitro chondrogenesis of mesenchymal progenitor cells and influences chondrogenesis in a dose-dependent manner. Int. Orthop. 37:1 (2013), 153–158.
Tyler, J.A., Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem. J. 260:2 (1989), 543–548.
Blaney Davidson, E.N., Vitters, E.L., van der Kraan, P.M., van den Berg, W.B., Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann. Rheum. Dis. 65:11 (2006), 1414–1421.
Blaney Davidson, E.N., van der Kraan, P.M., van den Berg, W.B., TGF-beta and osteoarthritis. Osteoarthr. Cartil. 15:6 (2007), 597–604.
Chen, Z., Yue, S.X., Zhou, G., Greenfield, E.M., Murakami, S., ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation. J. Bone Miner. Res. 30:5 (2015), 765–774.
Ge, C., Xiao, G., Jiang, D., Franceschi, R.T., Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 176:5 (2007), 709–718.
Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M., Tabin, C.J., Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:5275 (1996), 613–622.
Ochiai, T., Shibukawa, Y., Nagayama, M., Mundy, C., Yasuda, T., Okabe, T., Shimono, K., Kanyama, M., Hasegawa, H., Maeda, Y., Lanske, B., Pacifici, M., Koyama, E., Indian hedgehog roles in post-natal TMJ development and organization. J. Dent. Res. 89:4 (2010), 349–354.
Shibukawa, Y., Young, B., Wu, C., Yamada, S., Long, F., Pacifici, M., Koyama, E., Temporomandibular joint formation and condyle growth require Indian hedgehog signaling. Dev. Dyn. 236:2 (2007), 426–434.
Usmani, S.E., Appleton, C.T., Beier, F., Transforming growth factor-alpha induces endothelin receptor a expression in osteoarthritis. J. Orthop. Res. 30:9 (2012), 1391–1397.
Serra, R., Karaplis, A., Sohn, P., Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects of transforming growth factor beta (TGF-beta) on endochondral bone formation. J. Cell Biol. 145:4 (1999), 783–794.
Mau, E., Whetstone, H., Yu, C., Hopyan, S., Wunder, J.S., Alman, B.A., PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms. Dev. Biol. 305:1 (2007), 28–39.
Ramos, Y.F., Meulenbelt, I., The role of epigenetics in osteoarthritis: current perspective. Curr. Opin. Rheumatol. 29:1 (2017), 119–129.
Wu, L., Cai, X., Dong, H., Jing, W., Huang, Y., Yang, X., Wu, Y., Lin, Y., Serum regulates adipogenesis of mesenchymal stem cells via MEK/ERK-dependent PPARgamma expression and phosphorylation. J. Cell. Mol. Med. 14:4 (2010), 922–932.
Harrington, K.S., Javed, A., Drissi, H., McNeil, S., Lian, J.B., Stein, J.L., Van Wijnen, A.J., Wang, Y.L., Stein, G.S., Transcription factors RUNX1/AML1 and RUNX2/Cbfa1 dynamically associate with stationary subnuclear domains. J. Cell Sci. 115:Pt 21 (2002), 4167–4176.
Lidke, D.S., Nagy, P., Heintzmann, R., Arndt-Jovin, D.J., Post, J.N., Grecco, H.E., Jares-Erijman, E.A., Jovin, T.M., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22:2 (2004), 198–203.