An ECHO of Cartilage: In Silico Prediction of Combinatorial Treatments to Switch Between Transient and Permanent Cartilage Phenotypes With Ex Vivo Validation.
Khurana, Sakshi; Schivo, Stefano; Plass, Jacqueline R Met al.
2021 • In Frontiers in Bioengineering and Biotechnology, 9, p. 732917
BMP7; IGF; PTHrP; chondrogenesis; computational model; hypertrophy; signal transduction
Abstract :
[en] A fundamental question in cartilage biology is: what determines the switch between permanent cartilage found in the articular joints and transient hypertrophic cartilage that functions as a template for bone? This switch is observed both in a subset of OA patients that develop osteophytes, as well as in cell-based tissue engineering strategies for joint repair. A thorough understanding of the mechanisms regulating cell fate provides opportunities for treatment of cartilage disease and tissue engineering strategies. The objective of this study was to understand the mechanisms that regulate the switch between permanent and transient cartilage using a computational model of chondrocytes, ECHO. To investigate large signaling networks that regulate cell fate decisions, we developed the software tool ANIMO, Analysis of Networks with interactive Modeling. In ANIMO, we generated an activity network integrating 7 signal transduction pathways resulting in a network containing over 50 proteins with 200 interactions. We called this model ECHO, for executable chondrocyte. Previously, we showed that ECHO could be used to characterize mechanisms of cell fate decisions. ECHO was first developed based on a Boolean model of growth plate. Here, we show how the growth plate Boolean model was translated to ANIMO and how we adapted the topology and parameters to generate an articular cartilage model. In ANIMO, many combinations of overactivation/knockout were tested that result in a switch between permanent cartilage (SOX9+) and transient, hypertrophic cartilage (RUNX2+). We used model checking to prioritize combination treatments for wet-lab validation. Three combinatorial treatments were chosen and tested on metatarsals from 1-day old rat pups that were treated for 6 days. We found that a combination of IGF1 with inhibition of ERK1/2 had a positive effect on cartilage formation and growth, whereas activation of DLX5 combined with inhibition of PKA had a negative effect on cartilage formation and growth and resulted in increased cartilage hypertrophy. We show that our model describes cartilage formation, and that model checking can aid in choosing and prioritizing combinatorial treatments that interfere with normal cartilage development. Here we show that combinatorial treatments induce changes in the zonal distribution of cartilage, indication possible switches in cell fate. This indicates that simulations in ECHO aid in describing pathologies in which switches between cell fates are observed, such as OA.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Khurana, Sakshi; Technical Medicine Centre, Department of Developmental BioEngineering, University
Schivo, Stefano ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique ; Technical Medicine Centre, Department of Developmental BioEngineering, University ; Department of Formal Methods and Tools, CTIT Institute, University of Twente,
Plass, Jacqueline R M; Technical Medicine Centre, Department of Developmental BioEngineering, University
Mersinis, Nikolas; Technical Medicine Centre, Department of Developmental BioEngineering, University
Scholma, Jetse; Technical Medicine Centre, Department of Developmental BioEngineering, University
Kerkhofs, Johan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Génie biomécanique
Zhong, Leilei; Technical Medicine Centre, Department of Developmental BioEngineering, University
van de Pol, Jaco; Department of Formal Methods and Tools, CTIT Institute, University of Twente, ; Dept. of Computer Science, Aarhus University, Aarhus, Denmark.
Langerak, Rom; Department of Formal Methods and Tools, CTIT Institute, University of Twente,
Geris, Liesbet ; Université de Liège - ULiège > GIGA > GIGA In silico medecine - Biomechanics Research Unit ; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven,
Karperien, Marcel; Technical Medicine Centre, Department of Developmental BioEngineering, University
Post, Janine N; Technical Medicine Centre, Department of Developmental BioEngineering, University
Language :
English
Title :
An ECHO of Cartilage: In Silico Prediction of Combinatorial Treatments to Switch Between Transient and Permanent Cartilage Phenotypes With Ex Vivo Validation.
Alberts B. Hopkin K. Johnson A. Morgan D. Raff K. Roberts K. et al. (2019). Essential Cell Biology. New York; London: W. W. Norton & Company.
Bartocci E. Corradini F. Merelli E. Tesei L. (2009). Model Checking Biological Oscillators. Electron. Notes Theor. Computer Sci. 229 (1), 41–58. 10.1016/j.entcs.2009.02.004
Blazek M. Santisteban T. S. Zengerle R. Meier M. (2015). Analysis of Fast Protein Phosphorylation Kinetics in Single Cells on a Microfluidic Chip. Lab. Chip 15 (3), 726–734. 10.1039/C4LC00797B
Caron M. M. J. Emans P. J. Cremers A. Surtel D. A. M. Coolsen M. M. E. van Rhijn L. W. et al. (2013). Hypertrophic Differentiation during Chondrogenic Differentiation of Progenitor Cells Is Stimulated by BMP-2 but Suppressed by BMP-7. Osteoarthritis and Cartilage 21 (4), 604–613. 10.1016/j.joca.2013.01.009
Caron M. M. J. Ripmeester E. G. J. van den Akker G. Wijnands N. K. A. P. Steijns J. Surtel D. A. M. et al. (2021). Discovery of Bone Morphogenetic Protein 7-derived Peptide Sequences that Attenuate the Human Osteoarthritic Chondrocyte Phenotype. Mol. Ther. - Methods Clin. Development 21, 247–261. 10.1016/j.omtm.2021.03.009
Chen Z. Yue S. X. Zhou G. Greenfield E. M. Murakami S. (2015). ERK1 and ERK2 Regulate Chondrocyte Terminal Differentiation during Endochondral Bone Formation. J. Bone Miner Res. 30 (5), 765–774. 10.1002/jbmr.2409
Cheng A. Genever P. G. (2010). SOX9 Determines RUNX2 Transactivity by Directing Intracellular Degradation. J. Bone Miner Res. 25 (12), 2680–2689. 10.1002/jbmr.174
David A. Larsen K. G. Legay A. Mikučionis M. Wang Z. (2011). “Time for Statistical Model Checking of Real-Time Systems”, in Computer Aided Verification. Berlin, Heidelberg: Springer, 349–355.
David A. Larsen K. G. Legay A. Mikučionis M. Poulsen D. B. Sedwards S. (2015). Statistical Model Checking for Biological Systems. Int. J. Softw. Tools Technol. Transfer 17 (3), 351–367. 10.1007/s10009-014-0323-4
Ducy P. Zhang R. Geoffroy V. Ridall A. L. Karsenty G. (1997). Osf2/Cbfa1: a Transcriptional Activator of Osteoblast Differentiation. Cell 89 (5), 747–754. 10.1016/s0092-8674(00)80257-3
Eames B. F. Sharpe P. T. Helms J. A. (2004). Hierarchy Revealed in the Specification of Three Skeletal Fates by Sox9 and Runx2. Developmental Biol. 274 (1), 188–200. 10.1016/j.ydbio.2004.07.006
Emons J. Dutilh B. E. Decker E. Pirzer H. Sticht C. Gretz N. et al. (2011). Genome-wide Screening in Human Growth Plates during Puberty in One Patient Suggests a Role for RUNX2 in Epiphyseal Maturation. J. Endocrinol. 209 (2), 245–254. 10.1530/JOE-10-0219
Foster J. W. Dominguez-Steglich M. A. Guioli S. Kwok C. Weller P. A. Stevanović M. et al. (1994). Campomelic Dysplasia and Autosomal Sex Reversal Caused by Mutations in an SRY-Related Gene. Nature 372 (6506), 525–530. 10.1038/372525a0
Gelse K. Ekici A. B. Cipa F. Swoboda B. Carl H. D. Olk A. et al. (2012). Molecular Differentiation between Osteophytic and Articular Cartilage - Clues for a Transient and Permanent Chondrocyte Phenotype. Osteoarthritis and Cartilage 20 (2), 162–171. 10.1016/j.joca.2011.12.004
Goldring M. B. (2012). Chondrogenesis, Chondrocyte Differentiation, and Articular Cartilage Metabolism in Health and Osteoarthritis. Ther. Adv. Musculoskelet. 4 (4), 269–285. 10.1177/1759720X12448454
Govindaraj K. Hendriks J. Lidke D. S. Karperien M. Post J. N. (2019). Changes in Fluorescence Recovery after Photobleaching (FRAP) as an Indicator of SOX9 Transcription Factor Activity. Biochim. Biophys. Acta (Bba) - Gene Regul. Mech. 1862 (1), 107–117. 10.1016/j.bbagrm.2018.11.001
Haaijman A. Karperien M. Lanske B. Hendriks J. Löwik C. W. G. M. Bronckers A. L. J. J. et al. (1999). Inhibition of Terminal Chondrocyte Differentiation by Bone Morphogenetic Protein 7 (OP-1) In Vitro Depends on the Periarticular Region but Is Independent of Parathyroid Hormone-Related Peptide. Bone 25 (4), 397–404. 10.1016/s8756-3282(99)00189-1
Han Y. Jin Y.-H. Yum J. Jeong H.-M. Choi J.-K. Yeo C.-Y. et al. (2011). Protein Kinase A Phosphorylates and Regulates the Osteogenic Activity of Dlx5. Biochem. biophysical Res. Commun. 407 (3), 461–465. 10.1016/j.bbrc.2011.03.034
Healy C. Uwanogho D. Sharpe P. T. (1999). Regulation and Role of Sox9 in Cartilage Formation. Dev. Dyn. 215 (1), 69–78. 10.1002/(sici)1097-0177(199905)215:1<69::aid-dvdy8>3.0.co;2-n
Heo J. S. Lee S. G. Kim H. O. (2017). Distal-less Homeobox 5 Is a Master Regulator of the Osteogenesis of Human Mesenchymal Stem Cells. Int. J. Mol. Med. 40 (5), 1486–1494. 10.3892/ijmm.2017.3142
Huang W. Chung U.-i. Kronenberg H. M. de Crombrugghe B. (2001). The Chondrogenic Transcription Factor Sox9 Is a Target of Signaling by the Parathyroid Hormone-Related Peptide in the Growth Plate of Endochondral Bones. Proc. Natl. Acad. Sci. 98 (1), 160–165. 10.1073/pnas.98.1.160
Huang X. Zhong L. Post J. N. Karperien M. (2018). Co-treatment of TGF-Β3 and BMP7 Is superior in Stimulating Chondrocyte Redifferentiation in Both Hypoxia and Normoxia Compared to Single Treatments. Sci. Rep. 8 (1), 10251. 10.1038/s41598-018-27602-y
Jing J. Hinton R. J. Mishina Y. Liu Y. Zhou X. Feng J. Q. (2014). Critical Role of Bmpr1a in Mandibular Condyle Growth. Connect. Tissue Res. 55, 73–78. 10.3109/03008207.2014.923858
Jing J. Ren Y. Zong Z. Liu C. Kamiya N. Mishina Y. et al. (2013). BMP Receptor 1A Determines the Cell Fate of the Postnatal Growth Plate. Int. J. Biol. Sci. 9 (9), 895–906. 10.7150/ijbs.7508
Kerkhofs J. Geris L. (2015). A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks. PLoS One 10 (6), e0130033. 10.1371/journal.pone.0130033
Kerkhofs J. Leijten J. Bolander J. Luyten F. P. Post J. N. Geris L. (2016). A Qualitative Model of the Differentiation Network in Chondrocyte Maturation: A Holistic View of Chondrocyte Hypertrophy. PLoS One 11 (8), e0162052. 10.1371/journal.pone.0162052
Kerkhofs J. Roberts S. J. Luyten F. P. Van Oosterwyck H. Geris L. (2012). Relating the Chondrocyte Gene Network to Growth Plate Morphology: from Genes to Phenotype. PLoS One 7 (4), e34729. 10.1371/journal.pone.0034729
Khurana S. Huisman J. Schivo S. Post J. N. (2021). “Quantitative Molecular Models for Biological Processes: Modeling of Signal Transduction Networks with ANIMO,”. Editors van Wijnen A. J Ganshina M. S (Humana Press, Totowa, New Jersey, United States), 141–161. 10.1007/978-1-0716-0989-7_10
Kim K.-I. Park Y.-S. Im G.-I. (2013). Changes in the Epigenetic Status of theSOX-9promoter in Human Osteoarthritic Cartilage. J. Bone Miner Res. 28 (5), 1050–1060. 10.1002/jbmr.1843
Kogan Y. Halevi-Tobias K. E. Hochman G. Baczmanska A. K. Leyns L. Agur Z. (2012). A New Validated Mathematical Model of the Wnt Signalling Pathway Predicts Effective Combinational Therapy by sFRP and Dkk. Biochem. J. 444 (1), 115–125. 10.1042/BJ20111887
Komori T. (2010). Regulation of Bone Development and Extracellular Matrix Protein Genes by RUNX2. Cell Tissue Res 339 (1), 189–195. 10.1007/s00441-009-0832-8
Kozhemyakina E. Lassar A. B. Zelzer E. (2015). A Pathway to Bone: Signaling Molecules and Transcription Factors Involved in Chondrocyte Development and Maturation. Development 142 (5), 817–831. 10.1242/dev.105536
Kronenberg H. M. (2003). Developmental Regulation of the Growth Plate. Nature 423 (6937), 332–336. 10.1038/nature01657
Kumar N. Hendriks B. S. Janes K. A. de Graaf D. Lauffenburger D. A. (2006). Applying Computational Modeling to Drug Discovery and Development. Drug Discov. Today 11 (17-18), 806–811. 10.1016/j.drudis.2006.07.010
Landman E. B. Miclea R. L. van Blitterswijk C. A. Karperien M. (2013). Small Molecule Inhibitors of WNT/β-catenin Signaling Block IL-1β- and TNFα-Induced Cartilage Degradation. Arthritis Res. Ther. 15 (4), R93–R11. 10.1186/ar4273
Lanske B. Karaplis A. C. Lee K. Luz A. Vortkamp A. Pirro A. et al. (1996). PTH/PTHrP Receptor in Early Development and Indian Hedgehog-Regulated Bone Growth. Science 273 (5275), 663–666. 10.1126/science.273.5275.663
Leijten J. C. H. Emons J. Sticht C. van Gool S. Decker E. Uitterlinden A. et al. (2012). Gremlin 1, Frizzled-Related Protein, and Dkk-1 Are Key Regulators of Human Articular Cartilage Homeostasis. Arthritis Rheum. 64 (10), 3302–3312. 10.1002/art.34535
Liao J. Hu N. Zhou N. Lin L. Zhao C. Yi S. et al. (2014). Sox9 Potentiates BMP2-Induced Chondrogenic Differentiation and Inhibits BMP2-Induced Osteogenic Differentiation. PloS one 9 (2), e89025. 10.1371/journal.pone.0089025
Loveys L. S. Gelb D. Hurwitz S. R. Puzas J. E. Rosier R. N. (1993). Effects of Parathyroid Hormone-Related Peptide on Chick Growth Plate Chondrocytes. J. Orthop. Res. 11 (6), 884–891. 10.1002/jor.1100110615
Mackie E. J. Ahmed Y. A. Tatarczuch L. Chen K.-S. Mirams M. (2008). Endochondral Ossification: How Cartilage Is Converted into Bone in the Developing Skeleton. Int. J. Biochem. Cel Biol. 40 (1), 46–62. 10.1016/j.biocel.2007.06.009
Mader A. H. Wupper H. Boon M. (2007). The Construction of Verification Models for Embedded Systems. CTIT Technical Report Series PublisherCentre for Telematics and Information Technology, University of Twente No. TR-CTIT-07-02 Volume1, ISSN (Print)1381-3625.
Michaelis L. Menten M. L. Johnson K. A. Goody R. S. (2011). The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry 50 (39), 8264–8269. 10.1021/bi201284u
Michaelis L. Menten M. L. (1913). Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369.
Ochiai T. Shibukawa Y. Nagayama M. Mundy C. Yasuda T. Okabe T. et al. (2010). Indian Hedgehog Roles in post-natal TMJ Development and Organization. J. Dent Res. 89 (4), 349–354. 10.1177/0022034510363078
Onyekwelu I. Goldring M. B. Hidaka C. (2009). Chondrogenesis, Joint Formation, and Articular Cartilage Regeneration. J. Cel. Biochem. 107 (3), 383–392. 10.1002/jcb.22149
Otto F. Thornell A. P. Crompton T. Denzel A. Gilmour K. C. Rosewell I. R. et al. (1997). Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development. Cell 89 (5), 765–771. 10.1016/s0092-8674(00)80259-7
Pavelin K. Cham J. A. de Matos P. Brooksbank C. Cameron G. Steinbeck C. (2012). Bioinformatics Meets User-Centred Design: a Perspective. Plos Comput. Biol. 8 (7), e1002554. 10.1371/journal.pcbi.1002554
Pawson T. Scott J. D. (2005). Protein Phosphorylation in Signaling - 50 Years and Counting. Trends Biochem. Sci. 30 (6), 286–290. 10.1016/j.tibs.2005.04.013
Ramos Y. F. M. Meulenbelt I. (2017). The Role of Epigenetics in Osteoarthritis: Current Perspective. Curr. Opin. Rheumatol. 29 (1), 119–129. 10.1097/BOR.0000000000000355
Schivo S. Khurana S. Govindaraj K. Scholma J. Kerkhofs J. Zhong L. et al. (2019). ECHO, the Executable CHOndrocyte: A Computational Model to Study Articular Chondrocytes in Health and Disease. Cell Signal 68, 109471. 10.1016/j.cellsig.2019.109471
Schivo S. Langerak R. (2017). “Discretization of Continuous Dynamical Systems Using UPPAAL,” in ModelEd, TestEd, TrustEd: Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birthday. Editors Katoen J.-P Langerak R Rensink A (Cham: Springer International Publishing, Berlin/Heidelberg,Germany), 297–315.
Schivo S. Scholma J. Karperien M. Post J. N. Van De Pol J. Langerak R. (2014a). Setting Parameters for Biological modelsWith ANIMO. Electron. Proc. Theor. Computer Sci. 145, 35–47. 10.4204/EPTCS.145.5
Schivo S. Scholma J. van der Vet P. E. Karperien M. Post J. N. van de Pol J. et al. (2016). Modelling with ANIMO: between Fuzzy Logic and Differential Equations. BMC Syst. Biol. 10 (1), 56. 10.1186/s12918-016-0286-z
Schivo S. Scholma J. Wanders B. Camacho R. A. U. van der Vet P. E. Karperien M. et al. (2012). Modelling Biological Pathway Dynamics with Timed Automata. Proceedings of the Ieee 12th Int. Conf. Bioinformatics Bioeng.; 11-13 Nov. 2012;Larnaca, Cyprus. IEEE.447–453. 10.1109/bibe.2012.6399719
Schivo S. Scholma J. Wanders B. Camacho R. A. U. van der Vet P. E. Karperien M. et al. (2014b). Modeling Biological Pathway Dynamics with Timed Automata. IEEE J. Biomed. Health Inform. 18 (3), 832–839. 10.1109/jbhi.2013.2292880
Scholma J. Schivo S. Urquidi Camacho R. A. van de Pol J. Karperien M. Post J. N. (2014). Biological Networks 101: Computational Modeling for Molecular Biologists. Gene 533 (1), 379–384. 10.1016/j.gene.2013.10.010
Shannon P. Markiel A. Ozier O. Baliga N. S. Wang J. T. Ramage D. et al. (2003). Cytoscape: a Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 13 (11), 2498–2504. 10.1101/gr.1239303
Shibukawa Y. Young B. Wu C. Yamada S. Long F. Pacifici M. et al. (2007). Temporomandibular Joint Formation and Condyle Growth Require Indian Hedgehog Signaling. Dev. Dyn. 236 (2), 426–434. 10.1002/dvdy.21036
Shu B. Zhang M. Xie R. Wang M. Jin H. Hou W. et al. (2011). BMP2, but Not BMP4, Is Crucial for Chondrocyte Proliferation and Maturation during Endochondral Bone Development. J. Cel Sci 124 (Pt 20), 3428–3440. 10.1242/jcs.083659
van der Kraan P. M. van den Berg W. B. (2012). Chondrocyte Hypertrophy and Osteoarthritis: Role in Initiation and Progression of Cartilage Degeneration? Osteoarthritis and Cartilage 20 (3), 223–232. 10.1016/j.joca.2011.12.003
van Gool S. A. Emons J. A. M. Leijten J. C. H. Decker E. Sticht C. van Houwelingen J. C. et al. (2012). Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage. PLoS One 7 (11), e44561. 10.1371/journal.pone.0044561
Waltemath D. Adams R. Beard D. A. Bergmann F. T. Bhalla U. S. Britten R. et al. (2011). Minimum Information about a Simulation Experiment (MIASE). Plos Comput. Biol. 7 (4), e1001122. 10.1371/journal.pcbi.1001122
Wang E. A. Israel D. I. Kelly S. Luxenberg D. P. (1993). Bone Morphogenetic Protein-2 Causes Commitment and Differentiation in C3Hl0T1/2 and 3T3 Cells. Growth Factors 9 (1), 57–71. 10.3109/08977199308991582
Waters S. L. Schumacher L. J. El Haj A. J. (2021). Regenerative Medicine Meets Mathematical Modelling: Developing Symbiotic Relationships. NPJ Regen. Med. 6 (1), 24–28. 10.1038/s41536-021-00134-2
Weir E. C. Philbrick W. M. Amling M. Neff L. A. Baron R. Broadus A. E. (1996). Targeted Overexpression of Parathyroid Hormone-Related Peptide in Chondrocytes Causes Chondrodysplasia and Delayed Endochondral Bone Formation. Proc. Natl. Acad. Sci. 93 (19), 10240–10245. 10.1073/pnas.93.19.10240
Welting T. J. M. Karperien M. Post J. N. (2018). NKX3.2 Plays a Key Role in Regulating HIF1α-Directed Angiogenesis in Chondrocytes. Biotarget 2, 11. 10.21037/biotarget.2018.07.01
Yoon B. S. Ovchinnikov D. A. Yoshii I. Mishina Y. Behringer R. R. Lyons K. M. (2005). Bmpr1a and Bmpr1b Have Overlapping Functions and Are Essential for Chondrogenesis In Vivo. Proc. Natl. Acad. Sci. 102 (14), 5062–5067. 10.1073/pnas.0500031102
Zhang M. Zhou Q. Liang Q.-Q. Li C.-G. Holz J. D. Tang D. et al. (2009). IGF-1 Regulation of Type II Collagen and MMP-13 Expression in Rat Endplate Chondrocytes via Distinct Signaling Pathways. Osteoarthritis and cartilage 17 (1), 100–106. 10.1016/j.joca.2008.05.007
Zhong L. Huang X. Karperien M. Post J. N. (2016a). Correlation between Gene Expression and Osteoarthritis Progression in Human. Int. J. Mol. Sci. 17 (7), 1126. 10.3390/ijms17071126
Zhong L. Huang X. Karperien M. Post J. (2015). The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. Ijms 16 (8), 19225–19247. 10.3390/ijms160819225
Zhong L. Huang X. Rodrigues E. D. Leijten J. C. H. Verrips T. El Khattabi M. et al. (2016b). Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells. Stem Cell Development 25 (23), 1808–1817. 10.1089/scd.2016.0222
Zhong L. Schivo S. Huang X. Leijten J. Karperien M. Post J. N. (2017). Nitric Oxide Mediates Crosstalk between Interleukin 1beta and WNT Signaling in Primary Human Chondrocytes by Reducing DKK1 and FRZB Expression. Int. J. Mol. Sci. 18 (11), 2491. 10.3390/ijms18112491