Characterization, propagation, and sensitivity analysis of uncertainties in the directed energy deposition process using a deep learning-based surrogate model
Pham Quy Duc, Thinh; Truong Vinh Hoang; Xuan Van Tranet al.
2022 • In Probabilistic Engineering Mechanics, 69, p. 103297
Statistical and Nonlinear Physics; Directed Energy Deposition; Deep Learning; M4 Steel
Abstract :
[en] Uncertainties raised from process parameters, material properties, and environmental conditions significantly impact the quality of the printed parts in the directed energy deposition (DED) process. In this study, we perform the characterization, propagation, and sensitivity analysis of the uncertainties in the DED process using deep learning (DL)-based surrogate model to investigate the influence of the uncertain input parameters on the quality of the final printed product. A DL-based surrogate model is first constructed using the offline data obtained from a finite element (FE) model, which was validated against experiments. Sources of uncertainties are characterized using the probabilistic method and are propagated using the Monte-Carlo (MC) simulation. Moreover, we perform the sensitivity analysis (SA) to determine the most influential sources of uncertainty and two potential use cases based on uncertainty quantification results Owing to the fast execution time of the surrogate model, the MC simulation is significantly efficient in terms of computational resources as compared to the simulation that is solely based on the FE model. It is shown that the investigated sources of uncertainty contribute substantially to the inconsistency of the final product quality as they induce variations in temperature field, cooling rate at the liquidus point, and melting pool sizes. These quantities are also strongly dependent on the clad height. Based on the SA results, the laser power, the scanning speed, the heat convection, and the thermal conductivity induce the most uncertainties to the melting pool sizes. Two potential use cases are assessed to further demonstrate the usefulness of UQ results (i.e., uncertainty reduction). In general, these findings provide valuable insights for the process parameter optimization of the DED under uncertainty to improve the quality of the final printed parts.
Disciplines :
Materials science & engineering
Author, co-author :
Pham Quy Duc, Thinh ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Duchene, Laurent ; Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles dans le domaine des matériaux et structures du génie civil
Tran Son Hoang; ULiège - University of Liège [BE]
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Language :
English
Title :
Characterization, propagation, and sensitivity analysis of uncertainties in the directed energy deposition process using a deep learning-based surrogate model
Alternative titles :
[fr] Caractérisation, propagation et analyse de sensibilité des incertitudes dans le processus de dépôt par énergie dirigée à l'aide d'un modèle de substitution basé sur l'apprentissage profond.
Original title :
[en] Characterization, propagation, and sensitivity analysis of uncertainties in the directed energy deposition process using a deep learning-based surrogate model
Jardin, R.T., Tuninetti, V., Tchuindjang, J.T., Hashemi, N., Carrus, R., Mertens, A., Duchêne, L., Tran, H.S., Habraken, A.M., Sensitivity analysis in the modeling of a high-speed, steel, thin wall produced by directed energy deposition. Metals, 10, 2020, 10.3390/met10111554.
Jardin, R.T., Tchoufang Tchuindjang, J., Duchêne, L., Tran, H.S., Hashemi, N., Carrus, R., Mertens, A., Habraken, A.M., Thermal histories and microstructures in direct energy deposition of a high speed steel thick deposit. Mater. Lett., 236, 2019, 10.1016/j.matlet.2018.09.157.
Shin, Y.C., Bailey, N., Katinas, C., Tan, W., Predictive modeling capabilities from incident powder and laser to mechanical properties for laser directed energy deposition. Comput. Mech., 61, 2018, 10.1007/s00466-018-1545-1.
Pinkerton, A.J., Ul Haq Syed, W., Li, L., An experimental and theoretical investigation of combined gas- and water-atomized powder deposition with a diode laser. J. Laser Appl., 18, 2006, 10.2351/1.2164486.
Mazumder, J., Dutta, D., Kikuchi, N., Ghosh, A., Closed loop direct metal deposition: Art to part. Opt.Lasers Eng., 34, 2000, 10.1016/S0143-8166(00)00072-5.
Ahn, D.G., Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools - state of the art. Int. J. Precis. Eng. Manuf., 12, 2011, 10.1007/s12541-011-0125-5.
Ahn, D.G., Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. Int. J. Precis. Eng. Manuf. - Green Technol., 3, 2016, 10.1007/s40684-016-0048-9.
Nath, P., Hu, Z., Mahadevan, S., Uncertainty quantification of grain morphology in laser direct metal deposition. Model. Simul. Mater. Sci. Eng., 27, 2019, 10.1088/1361-651X/ab1676.
Moges, T., Ameta, G., Witherell, P., A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations. J. Manuf. Sci. Eng. Trans. ASME, 141, 2019, 10.1115/1.4042789.
Wang, Z., Jiang, C., Liu, P., Yang, W., Zhao, Y., Horstemeyer, M.F., Chen, L.Q., Hu, Z., Chen, L., Uncertainty quantification and reduction in metal additive manufacturing. Npj Comput. Mater., 6, 2020, 10.1038/s41524-020-00444-x.
Hu, Z., Mahadevan, S., Uncertainty quantification and management in additive manufacturing: current status, needs, and opportunities. Int. J. Adv. Manuf. Technol., 93, 2017, 10.1007/s00170-017-0703-5.
Hu, Z., Mahadevan, S., Uncertainty quantification in prediction of material properties during additive manufacturing. Scr. Mater., 135, 2017, 10.1016/j.scriptamat.2016.10.014.
Nath, P., Hu, Z., Mahadevan, S., Multi-level uncertainty quantification in additive manufacturing. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, SFF 2017, 2020.
v. Hoang, T., Wu, L., Paquay, S., Golinval, J.C., Arnst, M., Noels, L., A computational stochastic multiscale methodology for MEMS structures involving adhesive contact. Tribol. Int., 110, 2017, 10.1016/j.triboint.2016.10.007.
Arnst, M., Ponthot, J.P., An overview of nonintrusive characterization, propagation, and sensitivity analysis of uncertainties in computational mechanics. Int. J. Uncertain. Quantif., 4, 2014, 10.1615/Int.J. UncertaintyQuantification.2014006990.
Mozaffar, M., Paul, A., Al-Bahrani, R., Wolff, S., Choudhary, A., Agrawal, A., Ehmann, K., Cao, J., Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manuf. Lett., 18, 2018, 10.1016/j.mfglet.2018.10.002.
Roy, M., Wodo, O., Data-driven modeling of thermal history in additive manufacturing. Addit. Manuf., 32, 2020, 10.1016/j.addma.2019.101017.
Lopez, F., Witherell, P., Lane, B., Identifying uncertainty in laser powder bed fusion additive manufacturing models. J. Mech. Des. Trans. ASME, 138, 2016, 10.1115/1.4034103.
Tapia, G., King, W., Johnson, L., Arroyave, R., Karaman, I., Elwany, A., Uncertainty propagation analysis of computational models in laser powder bed fusion additive manufacturing using polynomial chaos expansions. J. Manuf. Sci. Eng. Trans. ASME, 140, 2018, 10.1115/1.4041179.
Sudarsanam, J.A.T., Babu, S., Through Collaboration. Advanced simulation for additive manufacturing: Meeting challenges. 2015 http://www.osti.gov/scitech/.
Tran, H.S., Tchuindjang, J.T., Paydas, H., Mertens, A., Jardin, R.T., Duchêne, L., Carrus, R., Lecomte-Beckers, J., Habraken, A.M., 3D thermal finite element analysis of laser cladding processed Ti-6al-4V part with microstructural correlations. Mater. Des., 128, 2017, 10.1016/j.matdes.2017.04.092.
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., Variance based sensitivity analysis of model output, design and estimator for the total sensitivity index. Comput. Phys. Comm., 181, 2010, 10.1016/j.cpc.2009.09.018.
Mosayebidorcheh, S., Ganji, D.D., Farzinpoor, M., Approximate solution of the nonlinear heat transfer equation of a fin with the power-law temperature-dependent thermal conductivity and heat transfer coefficient. Propuls. Power Res., 3, 2014, 10.1016/j.jppr.2014.01.005.
Bennett, J.L., Wolff, S.J., Hyatt, G., Ehmann, K., Cao, J., Thermal effect on clad dimension for laser deposited inconel 718. J. Manuf. Process., 28, 2017, 10.1016/j.jmapro.2017.04.024.
Criales, L.E., Arısoy, Y.M., Özel, T., Sensitivity analysis of material and process parameters in finite element modeling of selective laser melting of Inconel 625. Int. J. Adv. Manuf. Technol., 86, 2016, 10.1007/s00170-015-8329-y.
in: Proceedings - ASPE 2014 Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing, Proceedings - ASPE 2014 Spring Topical Meeting: Dimensional Accuracy and Surface Finish in Additive Manufacturing. (2014).
H. Yeung, J. Neira, B. Lane, J. Fox, F. Lopez, Laser path planning and power control strategies for powder, in: Proceedings of the Solid Freeform Fabrication Symposium, 2016.
Compton, B.G., Post, B.K., Duty, C.E., Love, L., Kunc, V., Thermal analysis of additive manufacturing of large-scale thermoplastic polymer composites. Addit. Manuf., 17, 2017, 10.1016/j.addma.2017.07.006.
Fang, L., Yan, Y., Agarwal, O., Kang, S.H., Yao, S., Seppala, J.E., Effects of environmental temperature and humidity on the geometry and strength of polycarbonate specimens prepared by fused filament fabrication. Materials, 13, 2020, 10.3390/ma13194414.
Kempen, K., Vrancken, B., Buls, S., Thijs, L., van Humbeeck, J., Kruth, J.P., Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J. Manuf. Sci. Eng. Trans. ASME, 136, 2014, 10.1115/1.4028513.
Huang, C.Y., Srihari, K., Børgesen, P., Optimization of the substrate preheat temperature for the encapsulation of flip chip devices. Int. J. Adv. Manuf. Technol., 16, 2000, 10.1007/PL00013134.
Tang, D., Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 10.1088/1757-899X/87/1/012097.
Strumza, E., Yeheskel, O., Hayun, S., The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg. Addit. Manuf., 29, 2019, 10.1016/j.addma.2019.06.013.
Alkahari, M.R., Furumoto, T., Ueda, T., Hosokawa, A., Tanaka, R., Abdul Aziz, M.S., Thermal conductivity of metal powder and consolidated material fabricated via selective laser melting. Key Eng. Mater., 2012, 10.4028/www.scientific.net/KEM.523-524.244.
Rombouts, M., Froyen, L., v. Gusarov, A., Bentefour, E.H., Glorieux, C., Photopyroelectric measurement of thermal conductivity of metallic powders. J. Appl. Phys., 97, 2005, 10.1063/1.1832740.
Heigel, J.C., Michaleris, P., Reutzel, E.W., Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Addit. Manuf., 5, 2015, 10.1016/j.addma.2014.10.003.
Fetni, S., Enrici, T.M., Niccolini, T., Tran, H.S., Dedry, O., Duchêne, L., Mertens, A., Habraken, A.M., Thermal model for the directed energy deposition of composite coatings of 316l stainless steel enriched with tungsten carbides. Mater. Des., 204, 2021, 10.1016/j.matdes.2021.109661.
Kieruj, P., Przestacki, D., Chwalczuk, T., Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide. Arch. Mech. Technol. Mater., 36, 2016, 10.1515/amtm-2016-0006.
Sih, S.S., Barlow, J.W., Emissivity of powder beds. The 6th Solid Freeform Fabrication Symposium, 1995.
Fetni, S., Enrici, T.M., Niccolini, T., Tran, H.S., Dedry, O., Duchêne, L., Mertens, A., Habraken, A.M., Thermal model for the directed energy deposition of composite coatings of 316l stainless steel enriched with tungsten carbides. Mater. Des., 204, 2021, 10.1016/j.matdes.2021.109661.
Valiorgue, F., Brosse, A., Naisson, P., Rech, J., Hamdi, H., Bergheau, J.M., Emissivity calibration for temperatures measurement using thermography in the context of machining. Appl. Therm. Eng., 58, 2013, 10.1016/j.applthermaleng.2013.03.051.
Sudret, B., Uncertainty propagation and sensitivity analysis in mechanical models – Contributions to structural reliability and stochastic spectral methods. _Habilitation, 2007.
bin Huang, G., Zhu, Q.Y., Siew, C.K., Extreme learning machine: Theory and applications. Neurocomputing, 70, 2006, 10.1016/j.neucom.2005.12.126.
Pham, T.Q.D., Hoang, T.V., van Tran, X., Pham, Q.T., Fetni, S., Duchêne, L., Tran, H.S., Habraken, A.-M., Fast and accurate prediction of temperature evolutions in additive manufacturing process using deep learning. J. Intell. Manuf., 2022, 10.1007/s10845-021-01896-8.
Nagelkerke, N.J.D., A note on a general definition of the coefficient of determination. Biometrika, 78, 1991, 10.1093/biomet/78.3.691.
li Zhang, Q., hua Yao, J., Mazumder, J., Laser direct metal deposition technology and microstructure and composition segregation of inconel 718 superalloy. J. Iron Steel Res. Int., 18, 2011, 10.1016/S1006-706X(11)60054-X.
Ji, S., Liu, F., Shi, T., Fu, G., Shi, S., Effects of defocus distance on three-beam laser internal coaxial wire cladding. Chinese J. Mech. Eng., 34, 2021, 45, 10.1186/s10033-021-00560-9.