Drug induced liver injury, non-alcoholic fatty liver disease; gut microbiota; liver fibrosis; metabolic pathways; metagenomic; Pharmacology
Abstract :
[en] The gut microbiota could play a significant role in the progression of nonalcoholic fatty liver disease (NAFLD); however, its relevance in drug-induced liver injury (DILI) remains unexplored. Since the two hepatic disorders may share damage pathways, we analysed the metagenomic profile of the gut microbiota in NAFLD, with or without significant liver fibrosis, and in DILI, and we identified the main associated bacterial metabolic pathways. In the NAFLD group, we found a decrease in Alistipes, Barnesiella, Eisenbergiella, Flavonifractor, Fusicatenibacter, Gemminger, Intestinimonas, Oscillibacter, Parasutterella, Saccharoferementans and Subdoligranulum abundances compared with those in both the DILI and control groups. Additionally, we detected an increase in Enterobacter, Klebsiella, Sarcina and Turicibacter abundances in NAFLD, with significant liver fibrosis, compared with those in NAFLD with no/mild liver fibrosis. The DILI group exhibited a lower microbial bacterial richness than the control group, and lower abundances of Acetobacteroides, Blautia, Caloramator, Coprococcus, Flavobacterium, Lachnospira, Natronincola, Oscillospira, Pseudobutyrivibrio, Shuttleworthia, Themicanus and Turicibacter compared with those in the NAFLD and control groups. We found seven bacterial metabolic pathways that were impaired only in DILI, most of which were associated with metabolic biosynthesis. In the NAFLD group, most of the differences in the bacterial metabolic pathways found in relation to those in the DILI and control groups were related to fatty acid and lipid biosynthesis. In conclusion, we identified a distinct bacterial profile with specific bacterial metabolic pathways for each type of liver disorder studied. These differences can provide further insight into the physiopathology and development of NAFLD and DILI.
Disciplines :
Gastroenterology & hepatology
Author, co-author :
Rodriguez Diaz, Cristina ; Université de Liège - ULiège > Département de sciences des denrées alimentaires (DDA) ; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
Taminiau, Bernard ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
García-García, Alberto; UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
Cueto, Alejandro; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, Servicio de Farmacologia Clinica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
Robles-Díaz, Mercedes; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain
Ortega-Alonso, Aida; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
Martín-Reyes, Flores; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
Daube, Georges ; Université de Liège - ULiège > Fundamental and Applied Research for Animals and Health (FARAH) > FARAH: Santé publique vétérinaire
Sanabria-Cabrera, Judith; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, Servicio de Farmacologia Clinica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain, UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain
Jimenez-Perez, Miguel; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, UGC de Enfermedades Digestivas, Hospital Regional Universitario, 29010 Málaga, Spain
Isabel Lucena, M; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, Servicio de Farmacologia Clinica, Hospital Universitario Virgen de la Victoria, Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain, UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Málaga, Spain. Electronic address: lucena@uma.es
Andrade, Raúl J; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain, Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain
García-Fuentes, Eduardo; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain. Electronic address: edugf1@gmail.com
García-Cortes, Miren; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 29010 Málaga, Spain
Tanvir, R.H., Barritt, A.S., Intestinal microbiota in liver disease. Best. Pr. Res Clin. Gastroenterol. 30 (2016), 133–142.
Andrade, R.J., Aithal, G.P., Björnsson, E.S., Kaplowitz, N., Kullak-Ublick, G.A., Larrey, D., Karlsen, T.H., EASL clinical practice guidelines: drug-induced liver injury. J. Hepatol. 70 (2019), 1222–1261.
Niu, M.W., Chen, P., Gut microbiota and drug-induced liver injury: an update. Chin. Med J. (Engl.) 133 (2020), 494–495.
Chen, M., Suzuki, A., Borlak, J., Andrade, R.J., Lucena, M.I., Drug-induced liver injury: interactions between drug properties and host factors. J. Hepatol. 63 (2015), 503–514.
Clayton, T.A., Baker, D., Lindon, J.C., Everett, J.R., Nicholson, J.K., Pharmacimetabonomic identification of a significant host microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad. Sci. USA 106 (2009), 14728–14733.
Gong, S., Lan, T., Zeng, L., Luo, H., Yang, X., Li, N., Chen, X., Liu, Z., Li, R., Win, S., et al. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J. Hepatol. 69 (2018), 51–59.
Milić, S., Lulić, D., Štimac, D., Non-alcoholic fatty liver disease and obesity: biochemical, metabolic and clinical presentation. World J. Gastroenterol. 20 (2014), 9330–9337.
Duarte, S.M.B., Stefano, J.T., Oliveira, C.P., Microbiota and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH). Ann. Hepatol. 18 (2019), 416–421.
Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., Guy, C.D., Seed, P.C., Rawls, J.F., David, L.A., et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63 (2016), 764–775.
Lammert, C., Imler, T., Teal, E., Chalasani, N., Patients with chronic liver disease suggestive of nonalcoholic fatty liver disease may be at higher risk for drug-induced liver injury. Clin. Gastroenterol. Hepatol. 17 (2019), 2814–2815.
Bessone, F., Dirchwolf, M., Rodil, M.A., Razori, M.V., Roma, M.G., Review article: drug-induced liver injury in the context of nonalcoholic fatty liver disease - a physiopathological and clinical integrated view. Aliment Pharm. Ther. 48 (2018), 892–913.
Jing, J., Wang, R.L., Zhao, X.Y., Zhu, Y., Niu, M., Wang, L.F., Song, X.A., He, T.T., Sun, Y.Q., Xu, W.T., et al. Association between the concurrence of pre-existing chronic liver disease and worse prognosis in patients with an herb- Polygonum multiflorum thunb. induced liver injury: a case-control study from a specialised liver disease center in China. BMJ Open, 9, 2019, e023567.
Fromenty, B., Drug-induced liver injury in obesity. J. Hepatol. 58 (2013), 824–826.
Kleiner, D.E., Chalasani, N.P., Lee, W.M., Fontana, R.J., Bonkovsky, H.L., Watkins, P.B., Hayashi, P.H., Davern, T.J., Navarro, V., Reddy, R., et al. Hepatic histological findings in suspected drug-induced liver injury: systematic evaluation and clinical associations. Hepatology 59 (2014), 661–670.
Aithal, G.P., Watkins, P.B., Andrade, R.J., Larrey, D., Molokhia, M., Takikawa, H., Hunt, C.M., Wilke, R.A., Avigan, M., Kaplowitz, N., et al. Case definition and phenotype standardization in drug-induced liver injury. Clin. Pharm. Ther. 89 (2011), 806–815.
Chalasani, N., Younossi, Z., Lavine, J.E., Charlton, M., Cusi, K., Rinella, M., Harrison, S.A., Brunt, E.M., Sanyal, A.J., The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67 (2018), 328–357.
Villanueva-Paz, M., Morán, L., López-Alcántara, N., Freixo, C., Andrade, R.J., Lucena, M.I., Cubero, F.J., Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxid. (Basel), 10, 2021, 390.
Delli Bovi, A.P., Marciano, F., Mandato, C., Siano, M.A., Savoia, M., Vajro, P., Oxidative Stress in Non-alcoholic Fatty Liver Disease. An Updated Mini Review. Front Med (Lausanne), 8, 2021, 595371.
Villeneuve, J.P., Pichette, V., Cytochrome P450 and liver diseases. Curr. Drug Metab. 5 (2004), 273–282.
Nati, M., Chung, K.J., Chavakis, T., The Role of Innate Immune Cells in Nonalcoholic Fatty Liver Disease. J. Innate Immun., 2021, 1–11.
Dara, L., Liu, Z.X., Kaplowitz, N., Mechanisms of adaptation and progression in idiosyncratic drug induced liver injury, clinical implications. Liver Int 36 (2016), 158–165.
Vajro, P., Paolella, G., Fasano, A., Microbiota and gut-liver axis: a mini-review on their influences on obesity and obesity related liver disease. J. Pedeatr Gastroenterol. Nutr. 56 (2013), 461–468.
Sharpton, S.R., Ajmera, V., Loomba, R., Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin. Gastroenterol. Hepatol. 17 (2019), 296–306.
Kolodziejczyk, A.A., Zheng, D., Shibolet, O., Elinav, E., The role of microbiome in NAFLD and Nash. EMBO Mol. Med, 11, 2019, e9302.
Dempsey, J.L., Cui, J.Y., Microbiome is a functional modifier of P450 drug metabolism. Curr. Pharm. Rep. 5 (2019), 481–490.
Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotech. 31 (2013), 814–821.
Andrade, R.J., Lucena, M.I., Fernández, M.C., Pelaez, G., Pachkoria, K., García-Ruiz, E., García-Muñoz, B., González-Grande, R., Pizarro, A., Durán, J.A., et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology 129 (2005), 512–521.
Angulo, P., Kleiner, D.E., Dam-Larsen, S., Adams, L.A., Bjornsson, E.S., Charatcharoenwitthaya, P., Mills, P.R., Keach, J.C., Lafferty, H.D., Stahler, A., et al. Liver Fibrosis, but No Other Histologic Features, Is Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 149 (2015), 389–397.
Kaswala, D.H., Lai, M., Afdhal, N.H., Fibrosis assessment in nonalcoholic fatty liver disease (NAFLD) in 2016. Dig. Dis. Sci. 61 (2016), 1356–1364.
Bedogni, G., Bellentani, S., Miglioli, L., Masutti, F., Passalacqua, M., Castiglione, A., Tiribelli, C., The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol., 6, 2006, 33.
Angulo, P., Hui, J.M., Marchesini, G., Bugianesi, E., George, J., Farrell, G.C., Enders, F., Saksena, S., Burt, A.D., Bida, J.P., et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45 (2007), 846–854.
Sterling, R.K., Lissen, E., Clumeck, N., Sola, R., Correa, M.C., Montaner, J., S Sulkowski, M., Torriani, F.J., Dieterich, D.T., Thomas, D.L., et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43 (2006), 1317–1325.
Bourliere, M., Penaranda, G., Renou, C., Botta-Fridlund, D., Tran, A., Portal, I., Lecomte, L., Castellani, P., Rosenthal-Allieri, M.A., Gerolami, R., et al. Validation and comparison of indexes for fibrosis and cirrhosis prediction in chronic hepatitis C patients: proposal for a pragmatic approach classification without liver biopsies. J. Viral Hepat. 13 (2006), 659–670.
Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahé, F., VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, 2016, e2584.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. Introducing mother: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Env Microbiol 75 (2009), 7537–7541.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., The SILVA ribosomal RNA gene database project: Improve data processing and web-based tools. Nucleic Acid. Res 41 (2011), D590–D596.
Fernandes, D.A., Reid, J., Macklaim, M.J., McMurrough, T.A., Edgell, D.R., Gloor, B.G., Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome, 2, 2014, 15.
Rodriguez, C., Taminiau, B., Brévers, B., Avesani, V., Van Broeck, J., Leroux, A., Gallot, M., Bruwier, A., Amory, H., Delmée, M., et al. Faecal microbiota characterization of horses using 16S rDNA barcoded pyrosequencing, and carriage rate of Clostridium difficile at hospital admission. BMC Microbiol, 15, 2015, 181.
Nkosi, B.V.Z., Padayachee, T., Gront, D., Nelson, D.R., Syed, K., Contrasting Health Effects of Bacteroidetes and Firmicutes Lies in Their Genomes: Analysis of P450s, Ferredoxins, and Secondary Metabolite Clusters. Int J. Mol. Sci., 23, 2022, 5057.
Wei, Y., Li, Y., Yan, L., Sun, C., Miao, Q., Wang, Q., Xiao, X., Lian, M., Li, B., Chen, Y., et al. Alterations of gut microbiome in autoimmune hepatitis. Hepatology 69 (2020), 569–577.
Ma, Z., Wang, X., Yin, P., Wu, R., Zhou, L., Xu, G., Niu, J., Serum metabolome and targeted bile acid profiling reveals potential novel biomarkers for drug-induced liver injury. Med. (Baltim. ), 98, 2019, e16717.
Chen, W., Wei, Y., Xiong, A., Li, Y., Guan, H., Wang, Q., Miao, Q., Bian, Z., Xiao, X., Lian, M., et al. Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis. Clin. Rev. Allergy Immunol. 58 (2020), 25–38.
Lou, J., Jiang, Y., Rao, B., Li, A., Ding, S., Yan, H., Zhou, H., Liu, Z., Shi, Q., Cui, G., et al. Fecal Microbiomes Distinguish Patients With Autoimmune Hepatitis From Healthy Individuals. Front Cel. Infect. Microbiol, 10, 2020, 342.
Rau, M., Rehman, A., Dittrich, M., Groen, A.K., Hermanns, H.M., Seyfried, F., Beyersdorf, N., Dandekar, T., Rosenstiel, P., Geier, A., Fecal SCFAs and gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. U. Eur. Gastroenterol. J. 6 (2018), 1496–1507.
Parker, B.J., Wearsch, P.A., Veloo, A.C., Rodriguez-Palacios, A., The Genus Alistipes: Gut Bacteria with emerging implications to inflammation, cancer and mental health. Front Inmmuno, 11, 2020, 906.
Jin, M., Kalainy, S., Baskota, N., Chiang, D., Deehan, E.C., McDougall, C., Tandon, P., Martínez, I., Cervera, C., Walter, J., et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids. Liver Int 39 (2019), 1437–1447.
Ren, S.M., Mei, L., Huang, H., Cao, S.F., Zhao, R.H., Zheng, P.Y., [Correlation analysis of gut microbiota and biochemical indexes in patients with non-alcoholic fatty liver disease]. Zhonghua Gan Zang Bing. Za Zhi 27 (2019), 369–375.
Scarpellini, E., Fagoonee, S., Rinninella, E., Rasetti, C., Aquila, I., Larussa, T., Ricci, P., Luzza, F., Abenavoli, L., Gut Microbiota and Liver Interaction through Immune System Cross-Talk: A Comprehensive Review at the Time of the SARS-CoV-2 Pandemic. J. Clin. Med, 9, 2020, 2488.
Duarte, S.M.B., Stefano, J.T., Miele, L., Ponziani, F.R., Souza-Basqueira, M., Okada, L.S.R.R., de Barros Costa, F.G., Toda, K., Mazo, D.F.C., Sabino, E.C., et al. Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: A prospective pilot study. Nutr. Metab. Cardiovasc Dis. 28 (2018), 369–384.
Chen, X., Zhang, Z., Li, H., Zhao, J., Wei, X., Lin, W., Zhao, X., Jiang, A., Yuan, J., Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 35 (2020), 2009–2019.
Zhang, J., Wang, C., Wang, J., Zhang, F., Relationship between intestinal flora and inflammatory factors in patients with nonalcoholic steatohepatitis. Exp. Ther. Med 15 (2018), 723–726.
Li, C., Cui, L., Wang, X., Yan, Z., Wang, S., Zheng, Y., Using intestinal flora to distinguish non-alcoholic steatohepatitis from non-alcoholic fatty liver. J. Int Med Res, 48, 2020 300060520978122.
Fei, N., Bruneau, A., Zhang, X., Wang, R., Wang, J., Rabot, S., Gérard, P., Zhao, L., Endotoxin Producers Overgrowing in Human Gut Microbiota as the Causative Agents for Nonalcoholic Fatty Liver Disease. mBio 11 (2020), e03263–19.
Yao, M., Qv, L., Lu, Y., Wang, B., Berglund, B., Li, L., An update of the efficacy and functionality of probiotics for the treatment of non-alcoholic fatty liver disease. Engineering 7 (2021), 679–686.
Feng, J., Tang, H., Li, M., Pang, X., Wang, L., Zhang, M., Zhao, Y., Zhang, X., Shen, J., The abundance of fecal Faecalibacterium prausnitzii in relation to obesity and gender in Chinese adults. Arch. Microbiol 196 (2014), 73–77.
Mohammadi, Z., Poustchi, H., Motamed-Gorji, N., Eghtesad, S., Hekmatdoost, A., Saniee, P., Merat, S., Fecal Microbiota in Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis: A Systematic review. Arch. Iran. Med 23 (2020), 44–52.
d'Hennezel, E., Abubucker, S., Murphy, L.O., Cullen, T.W., Total Lipopolysaccharide From the Human Gut Microbiome Silences Toll-Like Receptor Signaling. mSystems, 2, 2017 e00046-17.
Du, H.J., Zhao, S.X., Zhao, W., Fu, N., Li, W.C., Qin, X.J., Zhang, Y.G., Nan, Y.M., Zhao, J.M., Hepatic Macrophage activation and the LPS pathway in patients with different degrees of severity and histopathological patterns of drug induced liver injury. Histol. Histopathol. 36 (2021), 653–662.
Peters, B.A., Wilson, M., Moran, U., Pavlick, A., Izsak, A., Wechter, T., Weber, J.S., Osman, I., Ahn, J., Relating the gut metagenome and metatranscriptome to immunotherapy responses in melanoma patients. Genome Med, 11, 2019, 61.
Zheng, Y., Wang, T., Tu, X., Huang, Y., Zhang, H., Tan, D., Jiang, W., Cai, S., Zhao, P., Song, R., et al. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. J. Immunother. Cancer, 7, 2019, 193.
Cueto-Sanchez, A., Niu, H., Del Campo-Herrera, E., Robles-Díaz, M., Sanabria-Cabrera, J., Ortega-Alonso, A., Garcia-Cortes, M., Gonzalez-Grande, R., Jimenez-Perez, M., Ruiz-Cabello, F., et al. Lymphocyte Profile and Immune Checkpoint Expression in Drug-Induced Liver Injury: An Immunophenotyping Study. Clin. Pharm. Ther. 110 (2021), 1604–1612.
Caballano-Infantes, E., García-García, A., Lopez-Gomez, C., Cueto, A., Robles-Diaz, M., Ortega-Alonso, A., Martín-Reyes, F., Alvarez-Alvarez, I., Arranz-Salas, I., Ruiz-Cabello, F., et al. Differential iNKT and T Cells Activation in Non-Alcoholic Fatty Liver Disease and Drug-Induced Liver Injury. Biomedicines, 10, 2021, 55.
Jones, S.W., Penman, S.L., French, N.S., Park, B.K., Chadwick, A.E., Investigating dihydroorotate dehydrogenase inhibitor mediated mitochondrial dysfunction in hepatic in vitro models. Toxicol. Vitr., 72, 2021, 105096.
Fromenty, B., Alteration of mitochondrial DNA homeostasis in drug-induced liver injury. Food Chem. Toxicol., 135, 2020, 110916.
Pei, K., Gui, T., Kan, D., Feng, H., Jin, Y., Yang, Y., Zhang, Q., Du, Z., Gai, Z., Wu, J., et al. An Overview of Lipid Metabolism and Nonalcoholic Fatty Liver Disease. BioMed. Res Int, 2020, 2020, 4020249.
Chen, S.S., Huang, Y., Guo, Y.M., Li, S.S., Shi, Z., Niu, M., Zou, Z.S., Xiao, X.H., Wang, J.B., Serum Metabolomic Analysis of Chronic Drug-Induced Liver Injury With or Without Cirrhosis. Front Med, 8, 2021, 367.
Zhang, L., Niu, M., Wei, A.W., Tang, J.F., Tu, C., Bai, Z.F., Zou, Z.S., Xiao, X.H., Liu, Y.P., Wang, J.B., Risk profiling using metabolomic characteristics for susceptible individuals of drug-induced liver injury caused by Polygonum multiflorum. Arch. Toxicol. 94 (2020), 245–256.
Svegliati-Baroni, G., Pierantonelli, I., Torquato, P., Marinelli, R., Ferreri, C., Chatgilialoglu, C., Bartolini, D., Galli, F., Lipidomic biomarkers and mechanisms of lipotoxicity in non-alcoholic fatty liver disease. Free Radic. Biol. Med 144 (2019), 293–309.
Durand, M., Coué, M., Croyal, M., Moyon, T., Tesse, A., Atger, F., Ouguerram, K., Jacobi, D., Changes in Key Mitochondrial Lipids Accompany Mitochondrial Dysfunction and Oxidative Stress in NAFLD. Oxid. Med Cell Longev., 2021, 2021, 9986299.
Xiao, H., Chen, J., Duan, L., Li, S., Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J. Mol. Med, 47, 2021, 2.
Kumar, P., Smith, T., Raeman, R., Chopyk, D.M., Brink, H., Liu, Y., Sulchek, T., Anania, F.A., Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells. J. Biol. Chem. 293 (2018), 12781–12792.
Smirne, C., Rigamonti, C., De Benedittis, C., Sainaghi, P.P., Bellan, M., Burlone, M.E., Castello, L.M., Avanzi, G.C., Gas6/TAM Signaling Components as Novel Biomarkers of Liver Fibrosis. Dis. Markers, 2019, 2019, 2304931.
Wang, Q., Zhao, Y., Zang, B., Anti-inflammation and anti-apoptosis effects of growth arrest-specific protein 6 in acute liver injury induced by LPS/D-GalN in mice. Acta Cir. Bras., 35, 2020, e202000204.
Liu, J., Yang, D., Wang, X., Asare, P.T., Zhang, Q., Na, L., Shao, L., Gut Microbiota Targeted Approach in the Management of Chronic Liver Diseases. Front Cell Infect. Microbiol, 12, 2022, 774335.
Pinart, M., Dötsch, A., Schlicht, K., Laudes, M., Bouwman, J., Forslund, S.K., Pischon, T., Nimptsch, K., Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients, 14, 2021, 12.
Aron-Wisnewsky, J., Vigliotti, C., Witjes, J., Le, P., Holleboom, A.G., Verheij, J., Nieuwdorp, M., Clément, K., Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17 (2020), 279–297.
Loomba, R., Sanyal, A.J., The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 10 (2013), 686–690.