monoclonal antibodies (mAbs); drop-coating deposition Raman imaging (DCDR); multivariate curve resolution-alternating least square (MCR-ALS); singular value decomposition (SVD); nonlinear support vector regression (SVR); P-vect
Abstract :
[en] Glycosylation is considered a critical quality attribute of therapeutic proteins as it affects their stability, bioactivity, and safety. Hence, the development of analytical methods able to characterize the composition and structure of glycoproteins is crucial. Existing methods are time consuming, expensive, and require significant sample preparation, which can alter the robustness of the analyses. In this context, we developed a fast, direct, and simple drop-coating deposition Raman imaging (DCDR) method combined with multivariate curve resolution alternating least square (MCR-ALS) to analyze glycosylation in monoclonal antibodies (mAbs). A database of hyperspectral Raman imaging data of glycoproteins was built, and the glycoproteins were characterized by LC-FLR-MS as a reference method to determine the composition in glycans and monosaccharides. The DCDR method was used and allowed the separation of excipient and protein by forming a “coffee ring”. MCR-ALS analysis was performed to visualize the distribution of the compounds in the drop and to extract the pure spectral components. Further, the strategy of SVD-truncation was used to select the number of components to resolve by MCR-ALS. Raman spectra were processed by support vector regression (SVR). SVR models showed good predictive performance in terms of RMSECV, R2CV.
Disciplines :
Biotechnology
Author, co-author :
Hamla, Sabrina ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Sacre, Pierre-Yves ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Derenne, Allison; Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, ULB, Campus Plaine CP206/02, 1050 Brussels, Belgium
Cowper, Ben; National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
Goormaghtigh, Erik; Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, ULB, Campus Plaine CP206/02, 1050 Brussels, Belgium
Hubert, Philippe ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Ziemons, Eric ; Université de Liège - ULiège > Unités de recherche interfacultaires > Centre Interdisciplinaire de Recherche sur le Médicament (CIRM)
Language :
English
Title :
A New Alternative Tool to Analyse Glycosylation in Monoclonal Antibodies Based on Drop-Coating Deposition Raman imaging: A Proof of Concept
Hamla S. Sacré P.-Y. Derenne A. Derfoufi K.-M. Cowper B. Butré C.I. Delobel A. Goormaghtigh E. Hubert P. Ziemons E. A new alternative tool to analyse glycosylation in pharmaceutical proteins based on infrared spectroscopy combined with nonlinear support vector regression Analyst 2022 147 1086 1098 10.1039/D1AN00697E 35174378
Wuhrer M. Deelder A.M. Hokke C.H. Protein glycosylation analysis by liquid chromatography-mass spectrometry J. Chromatogr. B 2005 825 124 133 10.1016/j.jchromb.2005.01.030 16213446
Zhang L. Luo S. Zhang B. Glycan analysis of therapeutic glycoproteins MAbs 2016 8 205 215 10.1080/19420862.2015.1117719
Lalonde M.E. Durocher Y. Therapeutic glycoprotein production in mammalian cells J. Biotechnol. 2017 251 128 140 10.1016/j.jbiotec.2017.04.028
Hajba L. Csanky E. Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review Anal. Chim. Acta 2016 943 8 16 10.1016/j.aca.2016.08.035 27769380
Derenne A. Derfoufi K.M. Cowper B. Delporte C. Goormaghtigh E. FTIR spectroscopy as an analytical tool to compare glycosylation in therapeutic monoclonal antibodies Anal. Chim. Acta 2020 1112 62 71 10.1016/j.aca.2020.03.038
Chrimes A.F. Khoshmanesh K. Stoddart P.R. Mitchell A. Kalantar-Zadeh K. Microfluidics and raman microscopy: Current applications and future challenges Chem. Soc. Rev. 2013 42 5880 5906 10.1039/c3cs35515b
Zhang D. Mrozek M.F. Xie Y. Ben-Amotz D. Chemical segregation and reduction of Raman background interference using drop-coating deposition Appl. Spectrosc. 2004 58 929 933 10.1366/0003702041655430
Barman I. Dingari N.C. Kang J.W. Horowitz G.L. Dasari R.R. Feld M.S. Raman spectroscopy-based sensitive and specific detection of glycated hemoglobin Anal. Chem. 2012 84 2474 2482 10.1021/ac203266a
Magistrale L. In Scienze Chimiche per la Conservazione Prova Finale di Laurea Chemometric Analysis of the Photooxidative Decolorization of the azo dye Acid Red 97 Università Ca’ Foscari Venezia, Italy 2012
Haouchine M. Biache C. Lorgeoux C. Faure P. Marc O. Handle Matrix Rank Deficiency, Noise, and Interferences in 3D Emission—Excitation Matrices: Effective Truncated Singular-Value Decomposition in Chemometrics Applied to the Analysis of Polycyclic Aromatic Compounds ACS Omega 2022 10.1021/acsomega.2c02256
Üstün B. Melssen W.J. Buydens L.M.C. Visualisation and interpretation of Support Vector Regression models Anal. Chim. Acta 2007 595 299 309 10.1016/j.aca.2007.03.023 17606013
Walls D. Walker J.M. Protein Chromatography Protein Chromatogr. 1485 423 2017 10.1007/978-1-4939-6412-3
Smith J.P. Smith F.C. Booksh K.S. Multivariate Curve Resolution–Alternating Least Squares (MCR-ALS) with Raman Imaging Applied to Lunar Meteorites Appl. Spectrosc. 2018 72 404 419 10.1177/0003702817721715 28675305
Smith J.P. Holahan E.C. Smith F.C. Marrero V. Booksh K.S. A novel multivariate curve resolution-alternating least squares (MCR-ALS) methodology for application in hyperspectral Raman imaging analysis Analyst 2019 144 5425 5438 10.1039/C9AN00787C 31407728
Gourvénec S. Massart D.L. Rutledge D.N. Determination of the number of components during mixture analysis using the Durbin-Watson criterion in the Orthogonal Projection Approach and in the SIMPLe-to-use Interactive Self-modelling Mixture Analysis approach Chemom. Intell. Lab. Syst. 2002 61 51 61 10.1016/S0169-7439(01)00172-1
Brewster V.L. Ashton L. Goodacre R. Monitoring the glycosylation status of proteins using raman spectroscopy Anal. Chem. 2011 83 6074 6081 10.1021/ac2012009
Derenne A. Vandersleyen O. Goormaghtigh E. Lipid quantification method using FTIR spectroscopy applied on cancer cell extracts Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2014 1841 1200 1209 10.1016/j.bbalip.2013.10.010
Makki A.A. Massot V. Byrne H.J. Respaud R. Bertrand D. Mohammed E. Chourpa I. Bonnier F. Understanding the discrimination and quantification of monoclonal antibodies preparations using Raman spectroscopy J. Pharm. Biomed. Anal. 2021 194 113734 10.1016/j.jpba.2020.113734
Strickley R.G. Lambert W.J. A review of Formulations of Commercially Available Antibodies J. Pharm. Sci. 2021 110 2590 2608.e56 10.1016/j.xphs.2021.03.017
Oberg K.A. Fink A.L. A new attenuated total reflectance fourier transform infrared spectroscopy method for the study of proteins in solution Anal. Biochem. 1998 256 92 106 10.1006/abio.1997.2486
Smith J. Arnolds H. Polytetrafluoroethylene tape as a low-cost hydrophobic substrate for drop-coating deposition Raman spectroscopy of proteins J. Raman Spectrosc. 2018 49 1236 1239 10.1002/jrs.5371
Offroy M. Développement de la Super-Résolution Appliquée à L’imagerie des Spectroscopies Vibrationnelles University of Lille Villeneuve-d’Ascq, France 2012
Kumar A.K.S. Zhang Y. Li D. Compton R.G. A mini-review: How reliable is the drop casting technique? Electrochem. Commun. 2020 121 106867 10.1016/j.elecom.2020.106867
Hu P. Zheng X.-S. Zong C. Li M.-H. Zhang L.-Y. Li W. Ren B. Drop-coating deposition and surface-enhanced Raman spectroscopies (DCDRS and SERS) provide complementary information of whole human tears J. Raman Spectrosc. 2014 45 565 573 10.1002/jrs.4499
Zeid W.B. Brutin D. Influence of relative humidity on spreading, pattern formation and adhesion of a drying drop of whole blood Colloids Surfaces A Physicochem. Eng. Asp. 2013 430 1 7 10.1016/j.colsurfa.2013.03.019
Ortiz C. Zhang D. Xie Y. Ribbe A.E. Ben-Amotz D. Validation of the drop-coating deposition Raman method for protein analysis Anal. Biochem. 2006 353 157 166 10.1016/j.ab.2006.03.025 16674909