3D printing; Rheology; Soy protein isolate; Structure; Temperature; Texture; 3-D printing; 3D-printing; Effects of temperature; Highest temperature; Minimum flow; Rheological property; Shear-thinning behavior; Soy protein isolates; Textural characteristic; Textural properties; Food Science
Abstract :
[en] Herein, we investigated the influence of temperature on the rheological properties, 3D printability, and textural characteristics of soy protein isolate (SPI) pastes. All protein pastes showed shear-thinning behavior and high temperature improved the storage modulus (G′), the yield stress (τy), and the minimum flow stress (τf) of SPI paste. However, the addition of sodium alginate and gelatin reduced G′, τy, and τf of SPI-based pastes. After adding gelatin, more stable 3D printed structures formed with higher hardness, resilience, cohesiveness, springiness, and chewiness at higher printing temperatures of 35 °C and 45 °C. The addition of gelatin and higher printing temperatures promoted the formation of tight connections between soy protein particles which induced the formation of a dense 3D structure in SPI-based pastes. Overall, this work provided useful information to prepare protein-based food with good 3D printability.
Disciplines :
Biotechnology
Author, co-author :
Chen, Jingwang ; Université de Liège - ULiège > TERRA Research Centre ; Lab of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
Sun, Hongnan; Lab of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
Mu, Taihua; Lab of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
Blecker, Christophe ; Université de Liège - ULiège > Département GxABT > Smart Technologies for Food and Biobased Products (SMARTECH)
Richel, Aurore ; Université de Liège - ULiège > Département GxABT > Smart Technologies for Food and Biobased Products (SMARTECH)
Richard, Gaetan ; Université de Liège - ULiège > Département GxABT > Smart Technologies for Food and Biobased Products (SMARTECH)
Jacquet, Nicolas ; Université de Liège - ULiège > Département GxABT > Smart Technologies for Food and Biobased Products (SMARTECH)
Haubruge, Eric ; Université de Liège - ULiège > GxABT : Services généraux du site > Site GxABT - Cabinet du Vice-recteur
Goffin, Dorothée ; Université de Liège - ULiège > Département GxABT > Smart Technologies for Food and Biobased Products (SMARTECH)
Language :
English
Title :
Effect of temperature on rheological, structural, and textural properties of soy protein isolate pastes for 3D food printing
CSC - China Scholarship Council CAAS - Chinese Academy of Agricultural Sciences
Funding text :
The authors acknowledge the financial support from the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences and the fund of China Scholarship Council that enables us to carry out this study.
Chen, H., Xie, F., Chen, L., Zheng, B., Effect of rheological properties of potato, rice and corn starches on their hot-extrusion 3D printing behaviors. J. Food Eng. 244 (2019), 150–158, 10.1016/j.jfoodeng.2018.09.011.
Chen, J., Mu, T., Goffin, D., Blecker, C., Richard, G., Richel, A., Haubruge, E., Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. J. Food Eng. 261 (2019), 76–86, 10.1016/j.jfoodeng.2019.03.016.
Chen, Y., Zhang, M., Phuhongsung, P., 3D printing of protein-based composite fruit and vegetable gel system. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.), 141, 2021, 110978, 10.1016/j.lwt.2021.110978.
Costakis, W.J., Rueschhoff, L.M., Diaz-Cano, A.I., Youngblood, J.P., Trice, R.W., Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. J. Eur. Ceram. Soc. 36 (2016), 3249–3256, 10.1016/j.jeurceramsoc.2016.06.002.
Du, J., Dai, H., Wang, H., Yu, Y., Zhu, H., Fu, Y., Ma, L., Peng, L., Li, L., Wang, Q., Zhang, Y., Preparation of high thermal stability gelatin emulsion and its application in 3D printing. Food Hydrocolloids, 113, 2021, 106536, 10.1016/j.foodhyd.2020.106536.
Du, Y., Zhang, M., Chen, H., Effect of whey protein on the 3D printing performance of konjac hybrid gel. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.), 140, 2021, 110716, 10.1016/j.lwt.2020.110716.
Godoi, F.C., Prakash, S., Bhandari, B.R., 3d printing technologies applied for food design: status and prospects. J. Food Eng. 179 (2016), 44–54, 10.1016/j.jfoodeng.2016.01.025.
Guo, C., Zhang, M., Devahastin, S., Improvement of 3D printability of buckwheat starch-pectin system via synergistic Ca2+-microwave pretreatment. Food Hydrocolloids, 113, 2021, 106483, 10.1016/j.foodhyd.2020.106483.
Lanaro, M., Forrestal, D.P., Scheurer, S., Slinger, D.J., Liao, S., Powell, S.K., Woodruff, M.A., 3D printing complex chocolate objects: platform design, optimization and evaluation. J. Food Eng. 215 (2017), 13–22, 10.1016/j.jfoodeng.2017.06.029.
Le Tohic, C., O'Sullivan, J.J., Drapala, K.P., Chartrin, V., Chan, T., Morrison, A.P., Kerry, J.P., Kelly, A.L., Effect of 3D printing on the structure and textural properties of processed cheese. J. Food Eng. 220 (2018), 56–64, 10.1016/j.jfoodeng.2017.02.003.
Lipton, J.I., Printable food: the technology and its application in human health. Curr. Opin. Biotechnol. 44 (2017), 198–201, 10.1016/j.copbio.2016.11.015.
Liu, Y., Yu, Y., Liu, C., Regenstein, J.M., Liu, X., Zhou, P., Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 102 (2019), 338–346, 10.1016/j.lwt.2018.12.053.
Liu, Z., Bhandari, B., Prakash, S., Mantihal, S., Zhang, M., Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids 87 (2019), 413–424, 10.1016/j.foodhyd.2018.08.026.
Liu, Z., Bhandari, B., Prakash, S., Zhang, M., Creation of internal structure of mashed potato construct by 3D printing and its textural properties. Food Res. Int. 111 (2018), 534–543, 10.1016/j.foodres.2018.05.075.
Liu, Z., Bhandari, B., Zhang, M., Incorporation of probiotics (Bifidobacterium animalis subsp. Lactis) into 3D printed mashed potatoes: effects of variables on the viability. Food Res. Int., 128, 2020, 108795, 10.1016/j.foodres.2019.108795.
Liu, Z., Chen, H., Zheng, B., Xie, F., Chen, L., Understanding the structure and rheological properties of potato starch induced by hot-extrusion 3D printing. Food Hydrocolloids, 105, 2020, 105812, 10.1016/j.foodhyd.2020.105812.
Liu, Z., Zhang, M., Bhandari, B., Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes. Int. J. Biol. Macromol. 117 (2018), 1179–1187, 10.1016/j.ijbiomac.2018.06.048.
Liu, Z., Zhang, M., Bhandari, B., Yang, C., Impact of rheological properties of mashed potatoes on 3D printing. J. Food Eng. 220 (2018), 76–82, 10.1016/j.jfoodeng.2017.04.017.
Martínez-Monzó, J., Cárdenas, J., García-Segovia, P., Effect of temperature on 3D printing of commercial potato puree. Food Biophys. 14 (2019), 225–234, 10.1007/s11483-019-09576-0.
Pérez, B., Nykvist, H., Brøgger, A.F., Larsen, M.B., Falkeborg, M.F., Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: a review. Food Chem. 287 (2019), 249–257, 10.1016/j.foodchem.2019.02.090.
Phuhongsung, P., Zhang, M., Devahastin, S., Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.), 122, 2020, 109019, 10.1016/j.lwt.2020.109019.
Pulatsu, E., Su, J.W., Lin, J., Lin, M., Factors affecting 3D printing and post-processing capacity of cookie dough. Innovat. Food Sci. Emerg. Technol., 61, 2020, 102316, 10.1016/j.ifset.2020.102316.
Severini, C., Derossi, A., Ricci, I., Caporizzi, R., Fiore, A., Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. J. Food Eng. 220 (2018), 89–100, 10.1016/j.jfoodeng.2017.08.025.
Sun, J., Zhou, W., Huang, D., Fuh, J.Y.H., Hong, G.S., An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol. 8 (2015), 1605–1615, 10.1007/s11947-015-1528-6.
Wang, L., Zhang, M., Bhandari, B., Yang, C., Investigation on fish surimi gel as promising food material for 3D printing. J. Food Eng. 220 (2018), 101–108, 10.1016/j.jfoodeng.2017.02.029.
Yang, F., Zhang, M., Bhandari, B., Recent development in 3D food printing. Crit. Rev. Food Sci. Nutr. 57 (2017), 3145–3153, 10.1080/10408398.2015.1094732.
Yang, F., Zhang, M., Bhandari, B., Liu, Y., Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 87 (2018), 67–76, 10.1016/j.lwt.2017.08.054.
Zeng, X., Chen, H., Chen, L., Zheng, B., Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing. Food Chem., 342, 2021, 128362, 10.1016/j.foodchem.2020.128362.
Zhao, Z., Wang, Q., Yan, B., Gao, W., Jiao, X., Huang, J., Zhao, J., Zhang, H., Chen, W., Fan, D., Synergistic effect of microwave 3D print and transglutaminase on the self-gelation of surimi during printing. Innovat. Food Sci. Emerg. Technol., 67, 2020, 102546, 10.1016/j.ifset.2020.102546.
Zhu, S., Stieger, M.A., van der Goot, A.J., Schutyser, M.A.I., Extrusion-based 3D printing of food pastes: correlating rheological properties with printing behaviour. Innovat. Food Sci. Emerg. Technol., 58, 2019, 102214, 10.1016/j.ifset.2019.102214.