Ocean Engineering; Water Science and Technology; Aquatic Science; Global and Planetary Change; Oceanography
Abstract :
[en] The identification of mesoscale eddies from remote sensing altimetry is often used as a first step for downstream analyses of surface or subsurface auxiliary data sets, in a so-called composite analysis framework. This framework aims at characterizing the mean perturbations induced by eddies on oceanic variables, by merging the local anomalies of multiple data instances according to their relative position to eddies. Here, we evaluate different altimetry data sets derived for the Black Sea and compare their adequacy to characterize subsurface oxygen and salinity signatures induced by cyclonic and anticyclonic eddies. In particular, we propose that the theoretical consistency and estimated error of the reconstructed mean anomaly may serve to qualify the accuracy of gridded altimetry products and that BGC-Argo data provide a strong asset in that regard. The most recent of these data sets, prepared with a coastal concern in the frame of the ESA EO4SIBS project, provides statistics of eddy properties that, in comparison with earlier products, are closer to model simulations, in particular for coastal anticyclones. More importantly, the subsurface signature of eddies reconstructed from BGC-Argo floats data is more consistent when the EO4SIBS data set is used to relocate the profiles into an eddy-centric coordinate system. Besides, we reveal intense subsurface oxygen anomalies which stress the importance of mesoscale contribution to Black Sea oxygen dynamics and support the hypothesis that this contribution extends beyond transport and involves net biogeochemical processes.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Capet, Arthur ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > MAST (Modeling for Aquatic Systems)
Taburet, Guillaume
Mason, Evan ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > MAST (Modeling for Aquatic Systems)
Pujol, Marie Isabelle
Grégoire, Marilaure ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
Rio, Marie-Hélène
Language :
English
Title :
Using Argo Floats to Characterize Altimetry Products: A Study of Eddy-Induced Subsurface Oxygen Anomalies in the Black Sea
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Akpinar A. Fach B. A. Oguz T. (2017). Observing the Subsurface Thermal Signature of the Black Sea Cold Intermediate Layer With Argo Profiling Floats. Deep. Sea. Res. Part I. 124, 140–152. doi: 10.1016/j.dsr.2017.04.002
Amores A. Jordà G. Arsouze T. Le Sommer J. (2018). Up to What Extent can We Characterize Ocean Eddies Using Present-Day Gridded Altimetric Products? J. Geophys. Res. C.: Ocean. 123, 7220–7236. doi: 10.1029/2018jc014140
Bettencourt J. H. López C. Hernández-García E. Montes I. Sudre J. Dewitte B. et al. (2015). Boundaries of the Peruvian Oxygen Minimum Zone Shaped by Coherent Mesoscale Dynamics. Nat. Geosci. 8, 937–940. doi: 10.1038/ngeo2570
Bittig H. Wong A. Josh P. (2021). BGC-Argo Synthetic Profile File Processing and Format on Coriolis GDAC, V1.21. Report, Coriolis Argo Data Management Team (Brest, France: Ifremer). doi: 10.13155/55637
Bouffard J. Roblou L. Birol F. Pascual A. Fenoglio-Marc L. Cancet M. et al. (2011). “Introduction and Assessment of Improved Coastal Altimetry Strategies: Case Study Over the Northwestern Mediterranean Sea,” in Coastal Altimetry. Eds. Vignudelli S. Kostianoy A. G. Cipollini P. Benveniste J. (Berlin, Heidelberg: Springer Berlin Heidelberg), 297–330. doi: 10.1007/978-3-642-12796-0\_12
Capet A. Stanev E. V. Beckers J.-M. Murray J. W. Grégoire M. (2016). Decline of the Black Sea Oxygen Inventory. Biogeosciences 13, 1287–1297. doi: 10.5194/bg-13-1287-2016
Capet A. Troupin C. Carstensen J. Grégoire M. Beckers J.-M. (2014). Untangling Spatial and Temporal Trends in the Variability of the Black Sea Cold Intermediate Layer and Mixed Layer Depth Using the DIVA Detrending Procedure. Ocean. Dyn. 64, 315–324. doi: 10.1007/s10236-013-0683-4
Capet A. Vandenbulcke L. Grégoire M. (2020). A New Intermittent Regime of Convective Ventilation Threatens the Black Sea Oxygenation Status. Biogeosciences 17, 6507–6525. doi: 10.5194/bg-17-6507-2020
Chaigneau A. Le Texier M. Eldin G. Grados C. Pizarro O. (2011). Vertical Structure of Mesoscale Eddies in the Eastern South Pacific Ocean: A Composite Analysis From Altimetry and Argo Profiling Floats. J. Geophys. Res. 116, C11025. doi: 10.1029/2011jc007134
Chelton D. B. Schlax M. G. Samelson R. M. (2011). Global Observations of Nonlinear Mesoscale Eddies. Prog. Oceanogr. 91, 167–216. doi: 10.1016/j.pocean.2011.01.002
Escudier R. Bouffard J. Pascual A. Poulain P.-M. Pujol M.-I. (2013). Improvement of Coastal and Mesoscale Observation From Space: Application to the Northwestern Mediterranean Sea. Geophys. Res. Lett. 40, 2148–2153. doi: 10.1002/grl.50324
Flierl G. McGillicuddy D. J. (2002). "Chapt 4. Mesoscale and Submesoscale Physical-Biological Interactions", in The Sea Robinson A. R. McCarthy J. J. BrianRothschild J.. eds, 12 (New York: John Wiley & Sons, Inc), 113–185.
Gaube P. McGillicuddy D. J. Jr.Chelton D. B. Behrenfeld M. J. Strutton P. G. (2014). Regional Variations in the Influence of Mesoscale Eddies on Near-Surface Chlorophyll. J. Geophys. Res. C.: Ocean. 119, 8195–8220. doi: 10.1002/2014jc010111
Ginzburg A. I. Kostianoy A. G. Krivosheya V. G. Nezlin N. P. Soloviev D. M. Stanichny S. V. et al. (2002). Mesoscale Eddies and Related Processes in the Northeastern Black Sea. J. Mar. Syst. 32, 71–90. doi: 10.1016/S0924-7963(02)00030-1
Grayek S. Stanev E. V. Kandilarov R. (2010). On the Response of Black Sea Level to External Forcing: Altimeter Data and Numerical Modelling. Ocean. Dyn. 60, 123–140. doi: 10.1007/s10236-009-0249-7
Grégoire M. Alvera-Azcarate A. Buga L. Capet A. Constantin S. D’ortenzio F. et al. (2022). Monitoring Black Sea Environmental Changes From Space. Earth Syst. Sci. Data Submitted.
Grégoire M. Vandenbulcke L. Capet A. (2020). Black Sea Biogeochemical Reanalysis (CMEMS BS-Biogeochemistry) (Version 1) set. Copernicus Monitoring Environment Marine Service (CMEMS). Available at: https://doi.org/10.25423/CMCC/BLKSEA_REANALYSIS_BIO_007_005_BAMHBI
Gruber N. Lachkar Z. Frenzel H. Marchesiello P. Münnich M. McWilliams J. C. et al. (2011). Eddy-Induced Reduction of Biological Production in Eastern Boundary Upwelling Systems. Nat. Geosci. 4, 787–792. doi: 10.1038/ngeo1273
Ivanov L. I. Beşıktepe Ş. Özsoy E. (1997). “The Black Sea Cold Intermediate Layer,” in Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Eds. Özsoy E. Mikaelyan A. (Dordrecht: Springer Netherlands), 253–264. doi: 10.1007/978-94-011-5758-2\_20
Jousset S. Mulet S. Pujol M. -I.. (2021). Black Sea Mean Dynamic Topography, Copernicus Monitoring Environment Marine Service (CMEMS). Available at: https://doi.org/10.48670/moi-00138.
Konovalov S. K. Luther G. I. W. Friederich G. E. Nuzzio D. B. Tebo B. M. Murray J. W. et al. (2003). Lateral Injection of Oxygen With the Bosporus Plume—Fingers of Oxidizing Potential in the Black Sea. Limnol. Oceanogr. 48, 2369–2376. doi: 10.4319/lo.2003.48.6.2369
Konovalov S. K. Murray J. W. (2001). Variations in the Chemistry of the Black Sea on a Time Scale of Decades, (1960–1995). J. Mar. Syst. 31, 217–243. doi: 10.1016/S0924-7963(01)00054-9
Korotaev G. (2003). Seasonal, Interannual, and Mesoscale Variability of the Black Sea Upper Layer Circulation Derived From Altimeter Data. J. Geophys. Res. 108, 475. doi: 10.1029/2002JC001508
Korotaev G. K. Saenko O. A. Koblinsky C. J. (2001). Satellite Altimetry Observations of the Black Sea Level. J. Geophys. Res. 106, 917–933. doi: 10.1029/2000jc900120
Kubryakov A. A. Bagaev A. V. Stanichny S. V. Belokopytov V. N. (2018b). Thermohaline Structure, Transport and Evolution of the Black Sea Eddies From Hydrological and Satellite Data. Prog. Oceanogr. 167, 44–63. doi: 10.1016/j.pocean.2018.07.007
Kubryakov A. Plotnikov E. Stanichny S. (2018a). Reconstructing Large- and Mesoscale Dynamics in the Black Sea Region From Satellite Imagery and Altimetry Data—A Comparison of Two Methods. Remote Sens. 10, 239. doi: 10.3390/rs10020239
Kubryakov A. A. Stanichny S. V. (2011). Mean Dynamic Topography of the Black Sea, Computed From Altimetry, Drifter Measurements and Hydrology Data. Ocean. Sci. 7, 745–753. doi: 10.5194/os-7-745-2011
Kubryakov A. A. Stanichny S. V. (2015a). Mesoscale Eddies in the Black Sea From Satellite Altimetry Data. Oceanology 55, 56–67. doi: 10.1134/S0001437015010105
Kubryakov A. A. Stanichny S. V. (2015b). Seasonal and Interannual Variability of the Black Sea Eddies and its Dependence on Characteristics of the Large-Scale Circulation. Deep. Sea. Res. Part I. 97, 80–91. doi: 10.1016/j.dsr.2014.12.002Kubryakov2015-yq
Kubryakov A. A. Stanichny S. V. Zatsepin A. G. (2018c). Interannual Variability of Danube Waters Propagation in Summer Period of 1992–2015 and its Influence on the Black Sea Ecosystem. J. Mar. Syst. 179, 10–30. doi: 10.1016/j.jmarsys.2017.11.001
Kubryakov A. A. Stanichny S. V. Zatsepin A. G. Kremenetskiy V. V. (2016). Long-Term Variations of the Black Sea Dynamics and Their Impact on the Marine Ecosystem. J. Mar. Syst. 163, 80–94. doi: 10.1016/j.jmarsys.2016.06.006
Kurkin A. Kurkina O. Rybin A. Talipova T. (2020). Comparative Analysis of the First Baroclinic Rossby Radius in the Baltic, Black, Okhotsk and Mediterranean Seas. Russian J. Earth Sci. 20, 8. doi: 10.2205/2020ES000737
Lovecchio E. Gruber N. Münnich M. Frenger I. (2022). On the Processes Sustaining Biological Production in the Offshore Propagating Eddies of the Northern Canary Upwelling System. J. Geophys. Res. C.: Ocean. 127, e2021JC017691. doi: 10.1029/2021jc017691
Mason E. Pascual A. McWilliams J. C. (2014). A New Sea Surface Height–Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmos. Ocean. Technol. 31, 1181–1188. doi: 10.1175/JTECH-D-14-00019.1
McGillicuddy D. J. Jr. (2016). Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Ann. Rev. Mar. Sci. 8, 125–159. doi: 10.1146/annurev-marine-010814-015606
Menna M. Poulain P.-M. (2014). Geostrophic Currents and Kinetic Energies in the Black Sea Estimated From Merged Drifter and Satellite Altimetry Data. Ocean. Sci. 10, 155–165. doi: 10.5194/os-10-155-2014
Moreau T. Cadier E. Boy F. Aublanc J. Rieu P. Raynal M. et al. (2021). High-Performance Altimeter Doppler Processing for Measuring Sea Level Height Under Varying Sea State Conditions. Adv. Space. Res. 67, 1870–1886. doi: 10.1016/j.asr.2020.12.038
Murray J. W. Jannasch H. W. Honjo S. Anderson R. F. Reeburgh W. S. Top Z. et al. (1989). Unexpected Changes in the Oxic/Anoxic Interface in the Black Sea. Nature 338, 411–413. doi: 10.1038/338411a0
Oguz T. La Violette P. E. Unluata U. (1992). The Upper Layer Circulation of the Black Sea: Its Variability as Inferred From Hydrographic and Satellite Observations. J. Geophys. Res. 97, 12569. doi: 10.1029/92jc00812
Ostrovskii A. Zatsepin A. (2011). Short-Term Hydrophysical and Biological Variability Over the Northeastern Black Sea Continental Slope as Inferred From Multiparametric Tethered Profiler Surveys. Ocean. Dyn. 61, 797–806. doi: 10.1007/s10236-011-0400-0
Ostrovskii A. G. Zatsepin A. G. (2016). Intense Ventilation of the Black Sea Pycnocline Due to Vertical Turbulent Exchange in the Rim Current Area. Deep. Sea. Res. Part I. 116, 1–13. doi: 10.1016/j.dsr.2016.07.011
Ostrovskii A. G. Zatsepin A. G. Solovyev V. A. Soloviev D. M. (2018). The Short Timescale Variability of the Oxygen Inventory in the NE Black Sea Slope Water. Ocean. Sci. 14, 1567–1579. doi: 10.5194/os-14-1567-2018
Pegliasco C. Chaigneau A. Morrow R. (2015). Main Eddy Vertical Structures Observed in the Four Major Eastern Boundary Upwelling Systems. J. Geophys. Res. C.: Ocean. 120, 6008–6033. doi: 10.1002/2015jc010950
Pegliasco C. Chaigneau A. Morrow R. Dumas F. (2021). Detection and Tracking of Mesoscale Eddies in the Mediterranean Sea: A Comparison Between the Sea Level Anomaly and the Absolute Dynamic Topography Fields. Adv. Space. Res. 68, 401–419. doi: 10.1134/s0001437011020123
Piotukh V. B. Zatsepin A. G. Kazmin A. S. Yakubenko V. G. (2011). Impact of the Winter Cooling on the Variability of the Thermohaline Characteristics of the Active Layer in the Black Sea. Oceanology 51, 221. doi: 10.1134/S0001437011020123
Rasse R. Claustre H. Poteau A. (2020). The Suspended Small-Particle Layer in the Oxygen-Poor Black Sea: A Proxy for Delineating the Effective N -Yielding Section. Biogeosciences 17, 6491–6505. doi: 10.5194/bg-17-6491-2020
Ricour F. Capet A. D’Ortenzio F. Delille B. Grégoire M. (2021). Dynamics of the Deep Chlorophyll Maximum in the Black Sea as Depicted by BGC-Argo Floats. Biogeosciences 18, 755–774. doi: 10.5194/bg-18-755-2021
Ruiz S. Claret M. Pascual A. Olita A. Troupin C. Capet A. et al. (2019). Effects of Oceanic Mesoscale and Submesoscale Frontal Processes on the Vertical Transport of Phytoplankton. J. Geophys. Res. C.: Ocean. 124, 5999–6014. doi: 10.1029/2019JC015034
Samelson R. M. Schlax M. G. Chelton D. B. (2014). Randomness, Symmetry, and Scaling of Mesoscale Eddy Life Cycles. J. Phys. Oceanogr. 44, 1012–1029. doi: 10.1175/JPO-D-13-0161.1Samelson2014-wu
Schütte F. Karstensen J. Krahmann G. Hauss H. Fiedler B. Brandt P. et al. (2016). Characterization of “Dead-Zone” Eddies in the Eastern Tropical North Atlantic. Biogeosciences 13, 5865–5881. doi: 10.5194/bg-13-5865-2016
Shapiro G. I. Stanichny S. V. Stanychna R. R. (2010). Anatomy of Shelf–Deep Sea Exchanges by a Mesoscale Eddy in the North West Black Sea as Derived From Remotely Sensed Data. Remote Sens. Environ. 114, 867–875. doi: 10.1016/j.rse.2009.11.020
Sokolova E. Stanev E. V. Yakubenko V. Ovchinnikov I. Kos’yan R. (2001). Synoptic Variability in the Black Sea. Analysis of Hydrographic Survey and Altimeter Data. J. Mar. Syst. 31, 45–63. doi: 10.1016/S0924-7963(01)00046-X
Song X. Lai Z. Ji R. Chen C. Zhang J. Huang L. et al. (2012). Summertime Primary Production in Northwest South China Sea: Interaction of Coastal Eddy, Upwelling and Biological Processes. Cont. Shelf. Res. 48, 110–121. doi: 10.1016/j.csr.2012.07.016
Staneva J. V. Dietrich D. E. Stanev E. V. Bowman M. J. (2001). Rim Current and Coastal Eddy Mechanisms in an Eddy-Resolving Black Sea General Circulation Model. J. Mar. Syst. 31, 137–157. doi: 10.1016/S0924-7963(01)00050-1
Stanev E. V. Beckers J.-M. (1999). Numerical Simulations of Seasonal and Interannual Variability of the Black Sea Thermohaline Circulation. J. Mar. Syst. 22, 241–267. doi: 10.1016/S0924-7963(99)00043-3
Stanev E. V. He Y. Grayek S. Boetius A. (2013). Oxygen Dynamics in the Black Sea as Seen by Argo Profiling Floats. Geophys. Res. Lett. 40, 3085–3090. doi: 10.1002/grl.50606
Stanev E. V. Peneva E. Chtirkova B. (2019). Climate Change and Regional Ocean Water Mass Disappearance: Case of the Black Sea. J. Geophys. Res. C.: Ocean. 124, 140. doi: 10.1029/2019JC015076
Stanichny S. V. Kubryakov A. A. Soloviev D. M. (2016). Parameterization of Surface Wind-Driven Currents in the Black Sea Using Drifters, Wind, and Altimetry Data. Ocean. Dyn. 66, 1–10. doi: 10.1007/s10236-015-0901-3
Taburet G. Pujol M.-I. (2021). Quality Information Document: Sea Level TAC - DUACS Products (Mercator Ocean International) (Accessed 17 Jun 2021).
Taburet G. Sanchez-Roman A. Ballarotta M. Pujol M.-I. Legeais J.-F. Fournier F. et al. (2019). DUACS DT2018: 25 Years of Reprocessed Sea Level Altimetry Products. Ocean. Sci. 15, 1207–1224. doi: 10.5194/os-15-1207-2019
Vidnichuk A. V. Konovalov S. K. (2021). Changes in the Oxygen Regime in the Deep Part of the Black Sea in 1980–2019. Phys. Oceanogr. 28, 180–190. doi: 10.22449/1573-160X-2021-2-180-190
Zatsepin A. G. (2003). Observations of Black Sea Mesoscale Eddies and Associated Horizontal Mixing. J. Geophys. Res. 108, 58. doi: 10.1029/2002JC001390
Zatsepin A. Kubryakov A. Aleskerova A. Elkin D. Kukleva O. (2019). Physical Mechanisms of Submesoscale Eddies Generation: Evidences From Laboratory Modeling and Satellite Data in the Black Sea. Ocean. Dyn. 69, 253–266. doi: 10.1007/s10236-018-1239-4
Zhou F. Shapiro G. Wobus F. (2014). Cross-Shelf Exchange in the Northwestern Black Sea. J. Geophys. Res. C.: Ocean. 119, 2143–2164. doi: 10.1002/2013JC009484
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.