ACKR2; ACKR3; CXCL10/IP-10; CXCL11/I-TAC; CXCR3B; arrestin; isoform; scavenger; Chemokine CXCL11; Chemokines; beta-Arrestins; Alternative Splicing; Chemokine CXCL11/metabolism; beta-Arrestins/metabolism; beta-Arrestins/pharmacology; Chemokines/metabolism; Signal Transduction; Immunology; Immunology and Allergy
Abstract :
[en] The chemokine receptor CXCR3 plays a critical role in immune cell recruitment and activation. CXCR3 exists as two main isoforms, CXCR3-A and CXCR3-B, resulting from alternative splicing. Although the two isoforms differ only by the presence of an N-terminal extension in CXCR3-B, they have been attributed divergent functional effects on cell migration and proliferation. CXCR3-B is the more enigmatic isoform and the mechanisms underlying its function and signaling remain elusive. We therefore undertook an in-depth cellular and molecular comparative study of CXCR3-A and CXCR3-B, investigating their activation at different levels of the signaling cascades, including G protein coupling, β-arrestin recruitment and modulation of secondary messengers as well as their downstream gene response elements. We also compared the subcellular localization of the two isoforms and their trafficking under resting and stimulated conditions along with their ability to internalize CXCR3-related chemokines. Here, we show that the N-terminal extension of CXCR3-B drastically affects receptor features, modifying its cellular localization and preventing G protein coupling, while preserving β-arrestin recruitment and chemokine uptake capacities. Moreover, we demonstrate that gradual truncation of the N terminus leads to progressive recovery of surface expression and G protein coupling. Our study clarifies the molecular basis underlying the divergent effects of CXCR3 isoforms, and emphasizes the β-arrestin-bias and the atypical nature of CXCR3-B.
D'Uonnolo, Giulia; Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg ; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Reynders, Nathan; Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg ; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
Meyrath, Max; Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
Abboud, Dayana ; Université de Liège - ULiège > Département de pharmacie
Uchański, Tomasz; Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
Volkman, Brian F; Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
Janji, Bassam; Tumor Immunotherapy and Microenvironment, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
Hanson, Julien ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases - Molecular Pharmacology
Szpakowska, Martyna; Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg ; Tumor Immunotherapy and Microenvironment, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
Chevigné, Andy ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
Language :
English
Title :
The Extended N-Terminal Domain Confers Atypical Chemokine Receptor Properties to CXCR3-B.
FNR - Fonds National de la Recherche F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union COST - European Cooperation in Science and Technology
Zlotnik A Yoshie O. The Chemokine Superfamily Revisited. Immunity (2012) 36(5):705–16. doi: 10.1016/j.immuni.2012.05.008
Bachelerie F Graham GJ Locati M Mantovani A Murphy PM Nibbs R et al. New Nomenclature for Atypical Chemokine Receptors. Nat Immunol (2014) 15(3):207–8. doi: 10.1038/ni.2812
Bachelerie F Graham GJ Locati M Mantovani A Murphy PM Nibbs R et al. An Atypical Addition to the Chemokine Receptor Nomenclature: IUPHAR Review 15. Br J Pharmacol (2015) 172(16):3945–9. doi: 10.1111/bph.13182
Bonecchi R Graham GJ. Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response. Front Immunol (2016) 7:224. doi: 10.3389/fimmu.2016.00224
Weber M Blair E Simpson CV O'Hara M Blackburn PE Rot A et al. The Chemokine Receptor D6 Constitutively Traffics to and From the Cell Surface to Internalize and Degrade Chemokines. Mol Biol Cell (2004) 15(5):2492–508. doi: 10.1091/mbc.e03-09-0634
Galliera E Jala VR Trent JO Bonecchi R Signorelli P Lefkowitz RJ et al. Beta-Arrestin-Dependent Constitutive Internalization of the Human Chemokine Decoy Receptor D6. J Biol Chem (2004) 279(24):25590–7. doi: 10.1074/jbc.M400363200
Vacchini A Cancellieri C Milanesi S Badanai S Savino B Bifari F et al. Control of Cytoskeletal Dynamics by Beta-Arrestin1/Myosin Vb Signaling Regulates Endosomal Sorting and Scavenging Activity of the Atypical Chemokine Receptor Ackr2. Vaccines (Basel) (2020) 8(3). doi: 10.3390/vaccines8030542
Comerford I Milasta S Morrow V Milligan G Nibbs R. The Chemokine Receptor CCX-CKR Mediates Effective Scavenging of CCL19 In Vitro. Eur J Immunol (2006) 36(7):1904–16. doi: 10.1002/eji.200535716
McCulloch CV Morrow V Milasta S Comerford I Milligan G Graham GJ et al. Multiple Roles for the C-Terminal Tail of the Chemokine Scavenger D6. J Biol Chem (2008) 283(12):7972–82. doi: 10.1074/jbc.M710128200
Montpas N St-Onge G Nama N Rhainds D Benredjem B Girard M et al. Ligand-Specific Conformational Transitions and Intracellular Transport Are Required for Atypical Chemokine Receptor 3-Mediated Chemokine Scavenging. J Biol Chem (2018) 293(3):893–905. doi: 10.1074/jbc.M117.814947
Saaber F Schutz D Miess E Abe P Desikan S Ashok Kumar P et al. ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, But Not Beta-Arrestin. Cell Rep (2019) 26(6):1473–88.e9. doi: 10.1016/j.celrep.2019.01.049
Matti C Salnikov A Artinger M D'Agostino G Kindinger I Uguccioni M et al. ACKR4 Recruits GRK3 Prior to Beta-Arrestins But Can Scavenge Chemokines in the Absence of Beta-Arrestins. Front Immunol (2020) 11:720. doi: 10.3389/fimmu.2020.00720
Vacchini A Locati M Borroni EM. Overview and Potential Unifying Themes of the Atypical Chemokine Receptor Family. J Leukoc Biol (2016) 99(6):883–92. doi: 10.1189/jlb.2MR1015-477R
Sjoberg E Meyrath M Chevigne A Ostman A Augsten M Szpakowska M. The Diverse and Complex Roles of Atypical Chemokine Receptors in Cancer: From Molecular Biology to Clinical Relevance and Therapy. Adv Cancer Res (2020) 145:99–138. doi: 10.1016/bs.acr.2019.12.001
Groom JR Luster AD. CXCR3 in T Cell Function. Exp Cell Res (2011) 317(5):620–31. doi: 10.1016/j.yexcr.2010.12.017
Reynders N Abboud D Baragli A Noman MZ Rogister B Niclou SP et al. The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells (2019) 8(6). doi: 10.3390/cells8060613
Metzemaekers M Vanheule V Janssens R Struyf S Proost P. Overview of the Mechanisms That May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol (2017) 8:1970. doi: 10.3389/fimmu.2017.01970
Lasagni L Francalanci M Annunziato F Lazzeri E Giannini S Cosmi L et al. An Alternatively Spliced Variant of CXCR3 Mediates the Inhibition of Endothelial Cell Growth Induced by IP-10, Mig, and I-TAC, and Acts as Functional Receptor for Platelet Factor 4. J Exp Med (2003) 197(11):1537–49. doi: 10.1084/jem.20021897
Ehlert JE Addison CA Burdick MD Kunkel SL Strieter RM. Identification and Partial Characterization of a Variant of Human CXCR3 Generated by Posttranscriptional Exon Skipping. J Immunol (2004) 173(10):6234–40. doi: 10.4049/jimmunol.173.10.6234
Berchiche YA Sakmar TP. CXC Chemokine Receptor 3 Alternative Splice Variants Selectively Activate Different Signaling Pathways. Mol Pharmacol (2016) 90(4):483–95. doi: 10.1124/mol.116.105502
Smith JS Alagesan P Desai NK Pack TF Wu JH Inoue A et al. C-X-C Motif Chemokine Receptor 3 Splice Variants Differentially Activate Beta-Arrestins to Regulate Downstream Signaling Pathways. Mol Pharmacol (2017) 92(2):136–50. doi: 10.1124/mol.117.108522
Loetscher M Gerber B Loetscher P Jones SA Piali L Clark-Lewis I et al. Chemokine Receptor Specific for IP10 and Mig: Structure, Function, and Expression in Activated T-Lymphocytes. J Exp Med (1996) 184(3):963–9. doi: 10.1084/jem.184.3.963
Thompson BD Jin Y Wu KH Colvin RA Luster A.D. Birnbaumer L et al. Inhibition of G Alpha I2 Activation by G Alpha I3 in CXCR3-Mediated Signaling. J Biol Chem (2007) 282(13):9547–55. doi: 10.1074/jbc.M610931200
Smit MJ Verdijk P van der Raaij-Helmer EM Navis M Hensbergen PJ Leurs R et al. CXCR3-Mediated Chemotaxis of Human T Cells Is Regulated by a Gi- and Phospholipase C-Dependent Pathway and Not via Activation of MEK/p44/p42 MAPK Nor Akt/PI-3 Kinase. Blood (2003) 102(6):1959–65. doi: 10.1182/blood-2002-12-3945
Korniejewska A McKnight AJ Johnson Z Watson ML Ward SG. Expression and Agonist Responsiveness of CXCR3 Variants in Human T Lymphocytes. Immunology (2011) 132(4):503–15. doi: 10.1111/j.1365-2567.2010.03384.x
Romagnani P Beltrame C Annunziato F Lasagni L Luconi M Galli G et al. Role for Interactions Between IP-10/Mig and CXCR3 in Proliferative Glomerulonephritis. J Am Soc Nephrol (1999) 10(12):2518–26. doi: 10.1681/ASN.V10122518
Bonacchi A Romagnani P Romanelli RG Efsen E Annunziato F Lasagni L et al. Signal Transduction by the Chemokine Receptor CXCR3: Activation of Ras/ERK, Src, and Phosphatidylinositol 3-Kinase/Akt Controls Cell Migration and Proliferation in Human Vascular Pericytes. J Biol Chem (2001) 276(13):9945–54. doi: 10.1074/jbc.M010303200
Passeron T Malmqvst VEA Bzioueche H Marchetti S Rocchi S Tulic MK. Increased Activation of Innate Immunity and Pro-Apoptotic CXCR3B in Normal-Appearing Skin on the Lesional Site of Patients With Segmental Vitiligo. J Invest Dermatol (2022) 142(2):480–3.e2. doi: 10.1016/j.jid.2021.07.157
Tulic MK Cavazza E Cheli Y Jacquel A Luci C Cardot-Leccia N et al. Innate Lymphocyte-Induced CXCR3B-Mediated Melanocyte Apoptosis Is a Potential Initiator of T-Cell Autoreactivity in Vitiligo. Nat Commun (2019) 10(1):2178. doi: 10.1038/s41467-019-09963-8
Balan M Pal S. A Novel CXCR3-B Chemokine Receptor-Induced Growth-Inhibitory Signal in Cancer Cells Is Mediated Through the Regulation of Bach-1 Protein and Nrf2 Protein Nuclear Translocation. J Biol Chem (2014) 289(6):3126–37. doi: 10.1074/jbc.M113.508044
Szpakowska M Nevins AM Meyrath M Rhainds D D'Huys T Guite-Vinet F et al. Different Contributions of Chemokine N-Terminal Features Attest to a Different Ligand Binding Mode and a Bias Towards Activation of ACKR3/CXCR7 Compared With CXCR4 and CXCR3. Br J Pharmacol (2018) 175(9):1419–38. doi: 10.1111/bph.14132
Veldkamp CT Seibert C Peterson FC De laCruz NB Haugner JC 3rdBasnet H. et al. Structural Basis of CXCR4 Sulfotyrosine Recognition by the Chemokine SDF-1/Cxcl12. Sci Signal (2008) 1(37):ra4. doi: 10.1126/scisignal.1160755
Takekoshi T Ziarek JJ Volkman BF Hwang ST. A Locked, Dimeric CXCL12 Variant Effectively Inhibits Pulmonary Metastasis of CXCR4-Expressing Melanoma Cells Due to Enhanced Serum Stability. Mol Cancer Ther (2012) 11(11):2516–25. doi: 10.1158/1535-7163.MCT-12-0494
Meyrath M Palmer CB Reynders N Vanderplasschen A Ollert M Bouvier M et al. Proadrenomedullin N-Terminal 20 Peptides (PAMPs) Are Agonists of the Chemokine Scavenger Receptor Ackr3/Cxcr7. ACS Pharmacol Transl Sci (2021) 4(2):813–23. doi: 10.1021/acsptsci.1c00006
Chevigne A Janji B Meyrath M Reynders N D'Uonnolo G Uchanski T et al. CXCL10 Is an Agonist of the CC Family Chemokine Scavenger Receptor Ackr2/D6. Cancers (Basel) (2021) 13(5). doi: 10.3390/cancers13051054
Wouters E Walraed J Robertson MJ Meyrath M Szpakowska M Chevigne A et al. Assessment of Biased Agonism Among Distinct Synthetic Cannabinoid Receptor Agonist Scaffolds. ACS Pharmacol Transl Sci (2020) 3(2):285–95. doi: 10.1021/acsptsci.9b00069
Meyrath M Szpakowska M Zeiner J Massotte L Merz MP Benkel T et al. The Atypical Chemokine Receptor ACKR3/CXCR7 Is a Broad-Spectrum Scavenger for Opioid Peptides. Nat Commun (2020) 11(1):3033. doi: 10.1038/s41467-020-16664-0
Dixon AS Schwinn MK Hall MP Zimmerman K Otto P Lubben TH et al. NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem Biol (2016) 11(2):400–8. doi: 10.1021/acschembio.5b00753
Machleidt T Woodroofe CC Schwinn MK Mendez J Robers MB Zimmerman K et al. NanoBRET–A Novel BRET Platform for the Analysis of Protein-Protein Interactions. ACS Chem Biol (2015) 10(8):1797–804. doi: 10.1021/acschembio.5b00143
Schihada H Shekhani R Schulte G. Quantitative Assessment of Constitutive G Protein-Coupled Receptor Activity With BRET-Based G Protein Biosensors. Sci Signal (2021) 14(699):eabf1653. doi: 10.1126/scisignal.abf1653
Gilissen J Geubelle P Dupuis N Laschet C Pirotte B Hanson J. Forskolin-Free cAMP Assay for Gi-Coupled Receptors. Biochem Pharmacol (2015) 98(3):381–91. doi: 10.1016/j.bcp.2015.09.010
Nguyen LP Nguyen HT Yong HJ Reyes-Alcaraz A Lee YN Park HK et al. Establishment of a NanoBiT-Based Cytosolic Ca(2+) Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels. Mol Cells (2020) 43(11):909–20. doi: 10.14348/molcells.2020.0144
Nibbs RJ Graham GJ. Immune Regulation by Atypical Chemokine Receptors. Nat Rev Immunol (2013) 13(11):815–29. doi: 10.1038/nri3544
Naumann U Cameroni E Pruenster M Mahabaleshwar H Raz E Zerwes HG et al. CXCR7 Functions as a Scavenger for CXCL12 and CXCL11. PLoS One (2010) 5(2):e9175. doi: 10.1371/journal.pone.0009175
Canals M Scholten DJ de Munnik S Han MK Smit MJ Leurs R.. Ubiquitination of CXCR7 Controls Receptor Trafficking. PLoS One (2012) 7(3):e34192. doi: 10.1371/journal.pone.0034192
Szpakowska M Fievez V Arumugan K van Nuland N Schmit JC Chevigne A. Function, Diversity and Therapeutic Potential of the N-Terminal Domain of Human Chemokine Receptors. Biochem Pharmacol (2012) 84(10):1366–80. doi: 10.1016/j.bcp.2012.08.008
Saahene RO Wang J. Wang ML Agbo E Song H. The role of CXC chemokine ligand 152 4/CXC chemokine receptor 3-B in breast cancer progression. Biotech Histochem (2019) 94(1):53–9. doi: 10.1080/10520295.2018.1497201
Szpakowska M Chevigne A. Vccl2/vMIP-II, The Viral Master KEYmokine. J Leukoc Biol (2016) 99(6):893–900. doi: 10.1189/jlb.2MR0815-383R
Ulvmar MH Hub E Rot A. Atypical Chemokine Receptors. Exp Cell Res (2011) 317(5):556–68. doi: 10.1016/j.yexcr.2011.01.012
Campanella GS Colvin RA Luster AD. CXCL10 can Inhibit Endothelial Cell Proliferation Independently of CXCR3. PLoS One (2010) 5(9):e12700. doi: 10.1371/journal.pone.0012700
Ji R Lee CM Gonzales LW Yang Y Aksoy MO Wang P et al. Human Type II Pneumocyte Chemotactic Responses to CXCR3 Activation Are Mediated by Splice Variant a. Am J Physiol Lung Cell Mol Physiol (2008) 294(6):L1187–96. doi: 10.1152/ajplung.00388.2007
Szpakowska M Perez Bercoff D Chevigne A. Closing the Ring: A Fourth Extracellular Loop in Chemokine Receptors. Sci Signal (2014) 7(341):pe21. doi: 10.1126/scisignal.2005664
Kleist AB Getschman AE Ziarek JJ Nevins AM Gauthier PA Chevigne A et al. New Paradigms in Chemokine Receptor Signal Transduction: Moving Beyond the Two-Site Model. Biochem Pharmacol (2016) 114:53–68. doi: 10.1016/j.bcp.2016.04.007
Rajagopal S Bassoni DL Campbell JJ Gerard NP Gerard C Wehrman TS. Biased Agonism as a Mechanism for Differential Signaling by Chemokine Receptors. J Biol Chem (2013) 288(49):35039–48. doi: 10.1074/jbc.M113.479113
Colvin RA Campanella GS Sun J Luster AD. Intracellular Domains of CXCR3 That Mediate CXCL9, CXCL10, and CXCL11 Function. J Biol Chem (2004) 279(29):30219–27. doi: 10.1074/jbc.M403595200
Boye K Billottet C Pujol N Alves ID Bikfalvi A. Ligand Activation Induces Different Conformational Changes in CXCR3 Receptor Isoforms as Evidenced by Plasmon Waveguide Resonance (PWR). Sci Rep (2017) 7(1):10703. doi: 10.1038/s41598-017-11151-x
Sommer F Torraca V Kamel SM Lombardi A Meijer AH. Frontline Science: Antagonism Between Regular and Atypical Cxcr3 Receptors Regulates Macrophage Migration During Infection and Injury in Zebrafish. J Leukoc Biol (2020) 107(2):185–203. doi: 10.1002/JLB.2HI0119-006R
Gupta SK Pillarisetti K. Cutting Edge: CXCR4-Lo: Molecular Cloning and Functional Expression of a Novel Human CXCR4 Splice Variant. J Immunol (1999) 163(5):2368–72.
Duquenne C Psomas C Gimenez S Guigues A Carles MJ Barbuat C et al. The Two Human CXCR4 Isoforms Display Different HIV Receptor Activities: Consequences for the Emergence of X4 Strains. J Immunol (2014) 193(8):4188–94. doi: 10.4049/jimmunol.1303298
Yu CR Peden KW Zaitseva MB Golding H Farber JM. CCR9A and CCR9B: Two Receptors for the Chemokine CCL25/TECK/Ck Beta-15 That Differ in Their Sensitivities to Ligand. J Immunol (2000) 164(3):1293–305. doi: 10.4049/jimmunol.164.3.1293
Garin A Tarantino N Faure S Daoudi M Lecureuil C Bourdais A et al. Two Novel Fully Functional Isoforms of CX3CR1 Are Potent HIV Coreceptors. J Immunol (2003) 171(10):5305–12. doi: 10.4049/jimmunol.171.10.5305