Early Prediction of Coffee Yield in the Central Highlands of Vietnam Using a Statistical Approach and Satellite Remote Sensing Vegetation Biophysical Variables
[en] Given the present climate change context, accurate and timely coffee yield prediction is critical to all farmers who work in the coffee industry worldwide. The aim of this study is to develop and assess a coffee yield forecasting method at the regional scale in Dak Lak province in the central highlands of Vietnam using the Crop Growth Monitoring System Statistical Tool (CGMSstatTool—CST) software and vegetation biophysical variables (NDVI, LAI, and FAPAR) derived from satellite remote sensing (SPOT-VEGETATION and PROBA-V). There has been no research to date applying this approach to this specific crop, which is the main contribution of this study. The findings of this research reveal that the elaboration of multiple linear regression models based on a combination of information from satellite-derived vegetation biophysical variables (LAI, NDVI, and FAPAR) corresponding to the first six months of the years 2000–2019 resulted in coffee yield forecast models presenting satisfactory accuracy (Adj.R2 = 64 to 69%, RMSEp = 0.155 to 0.158 ton/ha and MAPE = 3.9 to 4.7%). These results demonstrate that the CST may efficiently predict coffee yields on a regional scale by using only satellite-derived vegetation biophysical variables. This study findings are likely to aid local governments and decision makers in precisely forecasting coffee production early and promptly, as well as in recommending relevant local agricultural policies.
Dao Nguyen Khoi; Faculty of Environment, University of Science, Ho Chi Minh City
Denis, Antoine ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement)
Luong Van Viet; Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City
Wellens, Joost ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Eau, Environnement, Développement ; Université de Liège - ULiège > Sphères
Tychon, Bernard ; Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Eau, Environnement, Développement
Language :
English
Title :
Early Prediction of Coffee Yield in the Central Highlands of Vietnam Using a Statistical Approach and Satellite Remote Sensing Vegetation Biophysical Variables
Publication date :
22 June 2022
Journal title :
Remote Sensing
eISSN :
2072-4292
Publisher :
MDPI, Basel, Switzerland
Special issue title :
Remote Sensing for Crop Stress Monitoring and Yield Prediction
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ubilava, D. El Niño, La Niña, and World Coffee Price Dynamics. Agric. Econ. 2012, 43, 17–26. [CrossRef]
Pohlan, J.; Janssens, M. Growth and Production of Coffee. In Soils, Plant Growth and Crop Production; Verheye, W.H., Ed.; Encyclopedia of Life: Oxford, UK, 2015.
Kouadio, L.; Tixier, P.; Byrareddy, V.; Marcussen, T.; Mushtaq, S.; Rapidel, B.; Stone, R. Performance of a Process-Based Model for Predicting Robusta Coffee Yield at the Regional Scale in Vietnam. Ecol. Model. 2021, 443, 109469. [CrossRef]
DaMatta, F.M.; Rahn, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why Could the Coffee Crop Endure Climate Change and Global Warming to a Greater Extent than Previously Estimated? Clim. Chang. 2019, 152, 167–178. [CrossRef]
Pham, Y.; Reardon-Smith, K.; Mushtaq, S.; Cockfield, G. The Impact of Climate Change and Variability on Coffee Production: A Systematic Review. Clim. Chang. 2019, 156, 609–630. [CrossRef]
Piato, K.; Lefort, F.; Subía, C.; Caicedo, C.; Calderón, D.; Pico, J.; Norgrove, L. Effects of Shade Trees on Robusta Coffee Growth, Yield and Quality. A Meta-Analysis. Agron. Sustain. Dev. 2020, 40, 38. [CrossRef]
USDA. Foreign Agricultural Service Volume of Coffee Exports from Vietnam from 2011 to 2021. Available online: https://www. statista.com/statistics/877329/vietnam-coffee-export-volume/(accessed on 10 December 2021).
ICO. Coffee Production Worldwide in 2020, by Leading Country. Available online: https://www.statista.com/statistics/277137/world-coffee-production-by-leading-countries/(accessed on 10 December 2021).
Thao, N.T.T.; Khoi, D.N.; Xuan, T.T.; Tychon, B. Assessment of Livelihood Vulnerability to Drought: A Case Study in Dak Nong Province, Vietnam. Int. J. Disaster Risk Sci. 2019, 10, 604–615. [CrossRef]
Jayakumar, M.; Rajavel, M.; Surendran, U.; Gopinath, G.; Ramamoorthy, K. Impact of Climate Variability on Coffee Yield in India—with a Micro-Level Case Study Using Long-Term Coffee Yield Data of Humid Tropical Kerala. Clim. Chang. 2017, 145, 335–349. [CrossRef]
Kath, J.; Byrareddy, V.M.; Craparo, A.; Nguyen-Huy, T.; Mushtaq, S.; Cao, L.; Bossolasco, L. Not so Robust: Robusta Coffee Production Is Highly Sensitive to Temperature. Glob. Chang. Biol. 2020, 26, 3677–3688. [CrossRef]
Nguyen, D.Q.; Renwick, J.; Mcgregor, J. Variations of Surface Temperature and Rainfall in Vietnam from 1971 to 2010. Int. J. Climatol. 2014, 34, 249–264. [CrossRef]
Van Viet, L. Development of a New ENSO Index to Assess the Effects of ENSO on Temperature over Southern Vietnam. Theor. Appl. Climatol. 2021, 144, 1119–1129. [CrossRef]
Vo, T. Vietnam Coffee Annual 2020; USDA: Washington, DC, USA, 2021; Volume 2021.
Gutierrez, A.P.; Villacorta, A.; Cure, J.R.; Ellis, C.K. Tritrophic Analysis of the Coffee (Coffea Arabica)—Coffee Berry Borer [Hypothenemus Hampei (Ferrari)]—Parasitoid System. An. Soc. Entomol. Bras. 1998, 27, 357–385. [CrossRef]
Rodríguez, D.; Cure, J.R.; Cotes, J.M.; Gutierrez, A.P.; Cantor, F. A Coffee Agroecosystem Model: I. Growth and Development of the Coffee Plant. Ecol. Model. 2011, 222, 3626–3639. [CrossRef]
Vezy, R.; le Maire, G.; Christina, M.; Georgiou, S.; Imbach, P.; Hidalgo, H.G.; Alfaro, E.J.; Blitz-Frayret, C.; Charbonnier, F.; Lehner, P.; et al. DynACof: A Process-Based Model to Study Growth, Yield and Ecosystem Services of Coffee Agroforestry Systems. Environ. Model. Softw. 2020, 124, 104609. [CrossRef]
Van Oijen, M.; Dauzat, J.; Harmand, J.M.; Lawson, G.; Vaast, P. Coffee Agroforestry Systems in Central America: II. Development of a Simple Process-Based Model and Preliminary Results. Agrofor. Syst. 2010, 80, 361–378. [CrossRef]
Rahn, E.; Vaast, P.; Läderach, P.; van Asten, P.; Jassogne, L.; Ghazoul, J. Exploring Adaptation Strategies of Coffee Production to Climate Change Using a Process-Based Model. Ecol. Model. 2018, 371, 76–89. [CrossRef]
Ovalle-Rivera, O.; Van Oijen, M.; Läderach, P.; Roupsard, O.; de Melo Virginio Filho, E.; Barrios, M.; Rapidel, B. Assessing the Accuracy and Robustness of a Process-Based Model for Coffee Agroforestry Systems in Central America. Agrofor. Syst. 2020, 94, 2033–2051. [CrossRef]
Kouadio, L.; Deo, R.C.; Byrareddy, V.; Adamowski, J.F.; Mushtaq, S.; Phuong Nguyen, V. Artificial Intelligence Approach for the Prediction of Robusta Coffee Yield Using Soil Fertility Properties. Comput. Electron. Agric. 2018, 155, 324–338. [CrossRef]
Molina, A.L.V.; Peralta, V.P.P.; Orozco, A.B.P.; Iglesias, M.I.O.; Guerrero, E.G. Calibration of the Aquacrop Model in Special Coffee (Coffea Arabica) Crops in the Sierra Nevada of Santa Marta, Colombia. J. Agron. 2018, 17, 241–250. [CrossRef]
Fall, C.M.N.; Lavaysse, C.; Kerdiles, H.; Dramé, M.S.; Roudier, P.; Gaye, A.T. Performance of Dry and Wet Spells Combined with Remote Sensing Indicators for Crop Yield Prediction in Senegal. Clim. Risk Manag. 2021, 33, 100331. [CrossRef]
Tebaldi, C.; Lobell, D.B. Towards Probabilistic Projections of Climate Change Impacts on Global Crop Yields. Geophys. Res. Lett. 2008, 35, 2–7. [CrossRef]
Laudien, R.; Schauberger, B.; Makowski, D.; Gornott, C. Robustly Forecasting Maize Yields in Tanzania Based on Climatic Predictors. Sci. Rep. 2020, 10, 19650. [CrossRef]
Nain, A.S.; Dadhwal, V.K.; Singh, T.P. Use of CERES-Wheat Model for Wheat Yield Forecast in Central Indo-Gangetic Plains of India. J. Agric. Sci. 2004, 142, 59–70. [CrossRef]
Lobell, D.B.; Burke, M.B. On the Use of Statistical Models to Predict Crop Yield Responses to Climate Change. Agric. For. Meteorol. 2010, 150, 1443–1452. [CrossRef]
Goedhart, P.W.; Hoek, S.B.; Boogaard, H.L. The CGMS Statistical Tool; Contributions by 2019; European Commission: Ispra, Italy, 2019.
Kerdiles, H.; Rembold, F.; Leo, O.; Boogaard, H.; Hoek, S. CST, a Freeware for Predicting Crop Yield from Remote Sensing or Crop Model Indicators: Illustration with RSA and Ethiopia. In Proceedings of the 2017 6th International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017. [CrossRef]
Qing, H.; Fei, T.; Jianqiang, R.; Wenbin, W.; Dandan, L.; Hui, D. The Application of China-CGMS in the Main Crop Growth Monitoring in Northeast China. In Proceedings of the 2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012; pp. 1–4.
Rembold, F.; Meroni, M.; Urbano, F.; Royer, A.; Atzberger, C.; Lemoine, G.; Eerens, H.; Haesen, D. Remote Sensing Time Series Analysis for Crop Monitoring with the SPIRITS Software: New Functionalities and Use Examples. Front. Environ. Sci. 2015, 3, 46. [CrossRef]
Balaghi, R.; Badjeck, M.C.; Bakari, D.; De Pauw, E.D.; De Wit, A.; Defourny, P.; Donato, S.; Gommes, R.; Jlibene, M.; Ravelo, A.C.; et al. Managing Climatic Risks for Enhanced Food Security: Key Information Capabilities. Procedia Environ. Sci. 2010, 1, 313–323. [CrossRef]
De Wit, A.; Duveiller, G.; Defourny, P. Estimating Regional Winter Wheat Yield with WOFOST through the Assimilation of Green Area Index Retrieved from MODIS Observations. Agric. For. Meteorol. 2012, 164, 39–52. [CrossRef]
Araya, S.; Ostendorf, B.; Lyle, G.; Lewis, M. Remote Sensing Derived Phenological Metrics to Assess the Spatio-Temporal Growth Variability in Cropping Fields. Adv. Remote Sens. 2017, 06, 212–228. [CrossRef]
López-Lozano, R.; Duveiller, G.; Seguini, L.; Meroni, M.; García-Condado, S.; Hooker, J.; Leo, O.; Baruth, B. Towards Regional Grain Yield Forecasting with 1km-Resolution EO Biophysical Products: Strengths and Limitations at Pan-European Level. Agric. For. Meteorol. 2015, 206, 12–32. [CrossRef]
Bernardes, T.; Moreira, M.A.; Adami, M.; Giarolla, A.; Rudorff, B.F.T. Monitoring Biennial Bearing Effect on Coffee Yield Using MODIS Remote Sensing Imagery. Remote Sens. 2012, 4, 2492–2509. [CrossRef]
Nogueira, S.M.C.; Moreira, M.A.; Volpato, M.M.L. Relationship between coffee crop productivity and vegetation indexes derived from oli/landsat-8 sensor data with and without topographic correction. Int. Braz. Assoc. Agric. Eng. 2018, 38, 387–394. [CrossRef]
DakLak Provincial People’s Committee. Available online: https://daklak.gov.vn/web/english/about-daklak (accessed on 4 April 2022).
CCAFS-SEA. The Drought Crisis in the Central Highlands of Vietnam—Assessment Report; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Hanoi, Vietnam, 2016.
Huong, N.T.; Anh, L.H. Factors Affecting the Technical Efficiency of Coffee Producers—Case Study in Dak Lak Province, Vietnam. Int. J. Econ. Commer. Manag. 2019, VII, 535–543.
Byrareddy, V.; Kouadio, L.; Kath, J.; Mushtaq, S.; Rafiei, V.; Scobie, M.; Stone, R. Win-Win: Improved Irrigation Management Saves Water and Increases Yield for Robusta Coffee Farms in Vietnam. Agric. Water Manag. 2020, 241, 106350. [CrossRef]
Titus, A.; Pereira, G.N. Water Use Efficiency for Robusta Coffee. Available online: https://ecofriendlycoffee.org/water-use-efficiency-robusta-coffee/(accessed on 17 December 2021).
Eerens, H.; Dominique, H. Software for the Processing and Interpretation of Remotely Sensed Image Time Series; User’s Manual Version 1.5.2—February 2018; VITO, EU Joint Research Center: Ispra, Italy, 2018.
Swets, D.; Reed, B.C.; Rowland, J.; Marko, S.E. A Weighted Least-Squares Approach to Temporal NDVI Smoothing. In Proceedings of the From Image to Information: 1999 ASPRS Annual Conference, Portland, Oregon, 17–21 May 1999.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.