Article (Scientific journals)
Early Prediction of Coffee Yield in the Central Highlands of Vietnam Using a Statistical Approach and Satellite Remote Sensing Vegetation Biophysical Variables
Nguyen Thi Thanh Thao; Dao Nguyen Khoi; Denis, Antoine et al.
2022In Remote Sensing, 14(13) (2975)
Peer reviewed
 

Files


Full Text
remotesensing-14-02975.pdf
Publisher postprint (3.51 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
coffee yield forecast; remote sensing vegetation biophysical variables; early prediction; CGMSstatTool; Vietnam; LAI; NDVI; FAPAR
Abstract :
[en] Given the present climate change context, accurate and timely coffee yield prediction is critical to all farmers who work in the coffee industry worldwide. The aim of this study is to develop and assess a coffee yield forecasting method at the regional scale in Dak Lak province in the central highlands of Vietnam using the Crop Growth Monitoring System Statistical Tool (CGMSstatTool—CST) software and vegetation biophysical variables (NDVI, LAI, and FAPAR) derived from satellite remote sensing (SPOT-VEGETATION and PROBA-V). There has been no research to date applying this approach to this specific crop, which is the main contribution of this study. The findings of this research reveal that the elaboration of multiple linear regression models based on a combination of information from satellite-derived vegetation biophysical variables (LAI, NDVI, and FAPAR) corresponding to the first six months of the years 2000–2019 resulted in coffee yield forecast models presenting satisfactory accuracy (Adj.R2 = 64 to 69%, RMSEp = 0.155 to 0.158 ton/ha and MAPE = 3.9 to 4.7%). These results demonstrate that the CST may efficiently predict coffee yields on a regional scale by using only satellite-derived vegetation biophysical variables. This study findings are likely to aid local governments and decision makers in precisely forecasting coffee production early and promptly, as well as in recommending relevant local agricultural policies.
Research Center/Unit :
SPHERES - ULiège
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Engineering, computing & technology: Multidisciplinary, general & others
Agriculture & agronomy
Author, co-author :
Nguyen Thi Thanh Thao  ;  Université de Liège - ULiège > Sphères
Dao Nguyen Khoi;  Faculty of Environment, University of Science, Ho Chi Minh City
Denis, Antoine  ;  Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement)
Luong Van Viet;  Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City
Wellens, Joost  ;  Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Eau, Environnement, Développement ; Université de Liège - ULiège > Sphères
Tychon, Bernard ;  Université de Liège - ULiège > Sphères ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Eau, Environnement, Développement
Language :
English
Title :
Early Prediction of Coffee Yield in the Central Highlands of Vietnam Using a Statistical Approach and Satellite Remote Sensing Vegetation Biophysical Variables
Publication date :
22 June 2022
Journal title :
Remote Sensing
eISSN :
2072-4292
Publisher :
MDPI, Basel, Switzerland
Special issue title :
Remote Sensing for Crop Stress Monitoring and Yield Prediction
Volume :
14(13)
Issue :
2975
Peer reviewed :
Peer reviewed
Available on ORBi :
since 22 June 2022

Statistics


Number of views
123 (17 by ULiège)
Number of downloads
163 (7 by ULiège)

Scopus citations®
 
12
Scopus citations®
without self-citations
9
OpenCitations
 
1
OpenAlex citations
 
14

Bibliography


Similar publications



Contact ORBi