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Abstract: Given the present climate change context, accurate and timely coffee yield prediction is
critical to all farmers who work in the coffee industry worldwide. The aim of this study is to develop
and assess a coffee yield forecasting method at the regional scale in Dak Lak province in the central
highlands of Vietnam using the Crop Growth Monitoring System Statistical Tool (CGMSstatTool—
CST) software and vegetation biophysical variables (NDVI, LAI, and FAPAR) derived from satellite
remote sensing (SPOT-VEGETATION and PROBA-V). There has been no research to date applying
this approach to this specific crop, which is the main contribution of this study. The findings of this
research reveal that the elaboration of multiple linear regression models based on a combination
of information from satellite-derived vegetation biophysical variables (LAI, NDVI, and FAPAR)
corresponding to the first six months of the years 2000–2019 resulted in coffee yield forecast models
presenting satisfactory accuracy (Adj.R2 = 64 to 69%, RMSEp = 0.155 to 0.158 ton/ha and MAPE = 3.9
to 4.7%). These results demonstrate that the CST may efficiently predict coffee yields on a regional
scale by using only satellite-derived vegetation biophysical variables. This study findings are likely
to aid local governments and decision makers in precisely forecasting coffee production early and
promptly, as well as in recommending relevant local agricultural policies.

Keywords: coffee yield forecast; remote sensing vegetation biophysical variables; early prediction;
CGMSstatTool; Vietnam; LAI; NDVI; FAPAR

1. Introduction

Coffee is one of the most crucial agricultural products in the global market, playing
a significant part in the economy of several developing countries in equatorial and sube-
quatorial regions (Africa, America, and Asia) [1–3]. Currently, two coffee bean species,
Coffee arabica L. (Arabica coffee) and C. canephora Pierre ex A. Froehner (Robusta coffee),
account for 99% of coffee production in the global coffee trade [3,4]. Coffee is grown in
approximately 80 tropical countries and contributes to the economic base of many of these
countries. In addition, about 25 million farmer families produce coffee worldwide, with
most being smallholders and families whose source of revenue largely depends on this
crop [4]. Coffee is a climate-sensitive perennial plant likely to be highly influenced by
changes in climate. Increasing climate variability may lead to coffee yield decrease and
coffee area damage and threaten coffee production in producing areas worldwide [5,6].
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Extreme weather events, such as severe droughts or excess precipitation, in these parts of
the world associated with the El Nino Southern Oscillation (ENSO) significantly influence
coffee production in the global market [1,3].

Vietnam is the world’s second largest exporter of coffee beans, with a total average
annual coffee production of 25.73 million 60-kg bags (1544 million metric tons) during
the period from 2011 to 2021, accounting for roughly 20 percent of the world’s coffee
production [7,8], and making it the largest global producer of robusta coffee [3]. The central
highlands area is one of the most critical regions for Vietnam’s economy because it is the
largest producer of coffee beans in Vietnam [3,9]—mainly robusta coffee [3]. Robusta coffee
yield is influenced by the interaction between precipitation, temperature, and phenological
stages. Robusta coffee reacts better to rising temperatures than arabica coffee [6,10,11] and
is considered more resistant to climate change than other coffee species [11]. In recent
years, increasing temperatures and variability in precipitation in Vietnam’s subregions
were associated with the El Nino Southern Oscillation [12,13]. Weather data indicated
lower precipitation and higher average temperatures than mean conditions in Vietnam’s
major coffee-growing areas for the first five months of the calendar year 2020, causing
lower yields and reduced production [14]. Therefore, it is necessary to provide decision
makers with support tools enabling forecasting of coffee yield and production in order to
facilitate the development of management strategies and of economic evaluation of coffee
production for the various stakeholders of the coffee industry, from smallholder farmers to
governmental authorities.

Models to simulate and predict coffee production have been developed in several stud-
ies. Gutierrez et al. (1998) [15] developed a model to simulate the vegetative growth process
of arabica coffee as age–mass-structured populations of stem, root, and leaves and enabled
branch-level computation of leaf area index at any stage of coffee development. Further-
more, Rodríguez et al. (2011) [16] built a model to simulate the phenology, growth, and
development of coffee plants based on the physiologically based models of Gutierrez et al.
(1998) [15]. The model inputs consisted of soil parameters (e.g., nitrogen and water) and
daily meteorological data. This model easily incorporated other coffee varieties in different
ecological zones where coffee is cultivated [16]. The model was successfully calibrated
for the Colombian and Brazilian regions, two areas with differing climates and flower
phenology (subtropical and equatorial) [17]. Van Oijen et al. (2010) also developed a simple
dynamic model of coffee agroforestry systems that models the physiology of vegetative
and reproductive growth of coffee plants and their response to different cultivating con-
ditions [18]. The strengths of this model are its ease of use, its speed, and that it can be
run under changing climatic conditions. Growing conditions such as weather conditions
(temperature, rain, light, humidity, and wind), soil conditions (initial organic matter and
nitrogen content, water balance, etc.), tree management (choice of species, density, etc.),
and coffee management (rotation length, fertilization, and pruning regime) are addressed
by the model as inputs. Rahn et al. (2018) [19] applied this model to two sites in East Africa
with different climates. It was also calibrated and modified successfully in two different
coffee-growing sites in Costa Rica and Nicaragua by Ovalle-Rivera et al. (2020) [20]. In
addition, Vezy et al. (2020) [17] designed a DynAC of model to incorporate a plant-scale
reproductive phenology formalism of the Rodríguez et al. (2011) model [16]. It was based
on canopy temperature, with distinct submodules to obtain suitable adjustment of coffee
and shade tree management, density, and tree species, as in the model of Van Oijen et al.
(2010) [18] (i.e., canopy temperature-dependent phenology and the submodules for agro-
forestry system management). Kouadio et al. (2021) also successfully tested a process-based
model using satellite remote sensing data (LAI) and model-based gridded climate data
for predicting robusta coffee yield in the central highlands of Vietnam [3]. Kouadio et al.
(2021) indicated that one of the limitations they encountered was the unavailability of
distinct production statistics for arabica and robusta coffee. Aside from the process-based
model [3], Kouadio et al. (2018) developed a model based on an artificial intelligence
approach using soil fertility properties to predict robusta coffee yield in the Lam Dong
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province of Vietnam [21]. Furthermore, Molina et al. (2018) successfully calibrated the
Aquacrop model to predict arabica coffee yield in Colombia [22]. The input databases for
this application contained parameters associated with climatic variables, soil, crops, and
management practices.

Most of the aforementioned models simulate coffee yields by accounting for the
growing conditions. These models mainly depend on the data collected in the field, as
well as observed weather data. The accuracy of such models also depends on accurate
descriptions of crop management practices (e.g., crop variety, sowing date, fertilization,
and irrigation), although collecting such data in a sufficiently accurate manner is difficult
at the regional scale [23]. Furthermore, several years of experimental data are necessary to
train and calibrate models to the local environmental conditions for these crop models, and
when they are applied in other regions, they have to be recalibrated [23].

Due to the limitations of these models, statistical models, such as multiple linear
regression, have been widely utilized to link crop yields to climate variables [24,25] or
even intermediate output variables from process-based crop models [26]. Despite not
being directly based on the mechanisms of plant growth, statistical models can effectively
predict crop production [23]. The main benefits of statistical models are their limited
dependence on field calibration data and their clear assessment of model uncertainties [27].
Statistical models typically perform better as the availability and quality of observable data
improve [23].

Among the various tools and methods that enable the development of statistically
based models, the “Crop Growth Monitoring System Statistical Tool” (CGMSstatTool–
CGMS statistical tool—CST) [28] is independent software for forecasting crop yield based
on initial indicator databases derived from crop models, climate data, or remote sensing
data [29]. The CST was developed by the MARS (Monitoring Agriculture with Remote
Sensing) unit of the European Union (EU) Joint Research Centre (JRC) to support the
development and selection of crop yield forecast models in order to assist national or
subnational crop yield forecasting activities [28]. The CST plays a crucial role in scientific
decision making in the EU agricultural economy [28]. The CST has been effectively applied
to growth monitoring and yield forecasting of some main crops in northeast China [30].
Fall et al. (2021) also used the CST to predict millet yield at a regional scale in Senegal with
input data containing weather data combined with variables derived from remote sensing
indicators (NDVI) [23]. The CST enables simple examination of data quality, analysis of
crop yield time trend, and construction of crop yield forecasting models through three
methods: (1) multivariate regression analysis; (2) scenario analysis, which is a method of
forecasting that looks for the previous years that are most similar to the current year based
on a set of indicators and combines their yields [23]; and (3) the moving average analysis
model, which is based on the average yields of the most recent years preceding the target
year. The CST calculates a number of statistics that facilitate the choice of the best crop
yield forecast model for a given region and time of prediction. Another advantage of the
CST is its ability to rapidly test multiple models [23,28].

With the development of satellite imagery, agricultural monitoring systems have used
indices derived from the spectral reflectance of vegetation to provide timely and concise
information about seasonal vegetative growth [31]. Remote-sensing-derived vegetation
indices (e.g., the normalized difference vegetation index, NDVI) and biophysical variables
(e.g., the fraction of absorbed photosynthetically active radiation (FAPAR) and the leaf
area index (LAI)) can be used to predict crop yield, either directly or indirectly [32,33]. In
addition, remote sensing vegetation variables enable estimation of crop growth variability
to quantify the relative development and health conditions of crops [34]. Such vegetation
indices and biophysical variables are the most common satellite products utilized for these
purposes [31]. At the national and regional levels, satellite systems can contribute effectively
to early warning of crop stress during the growing period and in forecasting harvest
yields [31,35]. In a study of the largest coffee-exporting province in Brazil using a dataset
covering the 2002–2009 period, Bernardes et al. (2012) [36] observed correlations between
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variations in the yield of coffee plots and variations in MODIS-derived EVI and NDVI
vegetation indices computed from pure coffee crops (250 m pixels) overlapping the same
coffee plots. The vegetation index metrics best correlated to yield were the amplitude and
the minimum values over the growing season. The best correlations were obtained between
the variation in yield and variation in vegetation indices of the previous year (R2 = 0.55). In
another study, Nogueira (2018) [37] evaluated the relationships between coffee productivity
of some coffee plantations in Brazil and values of NDVI, SAVI, and NDWI vegetation
indices derived from LANDSAT-8-OLI sensors for different coffee phenological phases.
They concluded that the best phenological phases of coffee to determine coffee productivity
from spectral indices were the stages of dormancy and flowering. The results also indicated
that the NDVI was the best index to estimate the productivity of coffee trees, with the
coefficient of determination (R2) ranging from 0.58 to 0.90.

The objective of this research is to develop and assess a coffee yield forecasting method
at the regional scale in Dak Lak province in the central highlands of Vietnam using Crop
Growth Monitoring System Statistical Tool (CGMSstatTool—CST) software and vegetation
biophysical variables (NDVI, LAI, and FAPAR) derived from satellite remote sensing
(SPOT-VEGETATION and PROBA-V).

The findings of this study are expected to assist local governments and decision
makers in accurately forecasting coffee yields early and in a timely manner, as well as in
recommending appropriate strategies for local agriculture.

2. Method
2.1. Study Area

The study was carried out in Dak Lak province, located in the central highlands of
Vietnam in the Lower Mekong River Basin. The total area is 13,125 km2, and in 2019, the
population of Dak Lak province was 2.127 million people. Currently, Dak Lak province
includes Buon Ma Thuot city, Buon Ho town, and 13 districts.

In Dak Lak province, agriculture is the main source of local livelihoods. The area’s
geographic coordinates are from 107◦ to 109◦ east longitude and from 12◦ to 13◦ north
latitude (Figure 1), with an average elevation range of 400–800 m. Dak Lak province is
dominated by a humid tropical climate. Generally, the area climate varies depending on
the altitude: below 300 m, it is hot all year round, in the range of 400–800 m it is hot and
humid, and it is cool at altitudes above 800 m [38]. There are two distinct seasons in Dak
Lak province: a rainy season from May to October, with approximately 80–85% of annual
rainfall, and a dry season from November to April, which is generally dry and sunny
(15–20% of annual rainfall). Dak Lak province is an agricultural area with perennial crops
such as coffee, pepper, cashew, and fruits, which play an important part in its economy. The
region also produces annual crops such as rice, maize, sweet potato, vegetables, sugarcane,
groundnut, and soybean [39]. Dak Lak has 209,955 ha of coffee area, accounting for nearly
31% of the country’s coffee area [40]. In Dak Lak province, coffee exports represent 86%
of total agricultural exports and more than 60% of the total yearly provincial income. In
addition, coffee production employs more than 300,000 direct workers and more than
100,000 indirect workers [41]. The vast majority of coffee trees are part of coffee tree
plantations, where coffee trees are the main vegetation story. Irrigation has been applied
one to four times per year since 2008 across robusta coffee crops in Dak Lak province (on
average, 1345 L/tree/year, i.e., 148 mm/year). Irrigation quantities vary based on rainfall
patterns during the coffee growing season [42].

The general methodological workflow followed in the present research is presented in
Figure 2 and further detailed below.
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Figure 1. Dak Lak province with the agricultural perennial planted area indicated in green. The
proposed methodology is based on multiple linear regression modeling using, on the one hand, the
official coffee yields of Dak Lak province and, on the other hand, phenological variables derived
from the seasonal dynamics of the satellite-derived biophysical variables NDVI (normalized differ-
ence vegetation index), LAI (leaf area index), and FAPAR (fraction of absorbed photosynthetically
active radiation).

2.2. Phenological Variables from Remote Sensing Time Series
2.2.1. Vegetation Biophysical Variables

Coffee yield forecasting is based on satellite imagery from Copernicus Hub 2022 (source:
https://land.copernicus.vgt.vito.be (accessed on 22 December 2021)), namely NDVI, LAI, and
FAPAR, available at a decadal (10-day) time step for the entire study area in Dak Lak province
and the same years as the official coffee yield statistics (Table 1). The 2000–2020 time series
of decadal LAI, NDVI, and FAPAR products (21 years × 36 dekads/year) derived from the
SPOT-VEGETATION and PROBA-V instruments were used in this study. The products are
freely available at a 1 km global spatial resolution.

Table 1. Remote sensing vegetation biophysical products used in this study and downloaded
from Copernicus Global Land Service (CGLS) (https://land.copernicus.vgt.vito.be/ (accessed on
22 December 2021)).

Remote Sensing
Vegetation Biophysical

Products
Definition Period

FAPAR Fraction of absorbed photosynthetically active radiation 2000–2020
LAI Leaf area index 2000–2020

NDVI Normalized difference vegetation index 2000–2020

https://land.copernicus.vgt.vito.be
https://land.copernicus.vgt.vito.be/
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Figure 2. General workflow of the coffee yield forecasting method. Green rectangles: raw input
data; yellow rectangles: data processing; blue rectangles: intermediate data; gray rectangles: variable
databases; and pink rectangle: final results.
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“The normalized difference vegetation index (NDVI) is an indicator of the greenness of the
vegetation biomes”. (source: https://land.copernicus.eu/global/products/ndvi
(accessed on 22 December 2021))

NDVI has theoretical values ranging from −1 to +1, where negative values mostly
correspond to clouds, water, and snow, whereas values near zero primarily correspond to
rocks and bare soil [23]. NDVI increases progressively with vegetation development.

“The Leaf Area Index is defined as half the total area of green elements of the canopy per
unit horizontal ground area. The satellite-derived value corresponds to the total green LAI
of all the canopy layers, including the understory which may represent a very significant
contribution, particularly for forests. Practically, the LAI quantifies the thickness of
the vegetation cover.” (source: https://land.copernicus.eu/global/products/lai
(accessed on 22 December 2021))

“The FAPAR quantifies the fraction of the solar radiation absorbed by live leaves for
the photosynthesis activity. Then, it refers only to the green and alive elements of the
canopy.” (source: https://land.copernicus.eu/global/products/FAPAR (accessed
on 22 December 2021))

In Vietnam, coffee phenology can be divided into five periods: (i) the flower-bud
initiation and blooming season is from January to March; (ii) the fruit-setting period is from
April to May; (iii) the cherry development period is from May to August; (iv) the maturity
stage is from September to October; and (v) the ripening/harvest period is from October
to December [3]. Two periods were considered in this study to compute the explanatory
variables used in the search for coffee yield prediction models. The first period corresponds
to 11 dekads, from mid-February to the end of May (dekads 5 to 15). This period was
considered because it corresponds to the crucial period of growth and development of the
coffee bush [43]. February to May are normally dry months in Vietnam, and coffee requires
irrigation to guarantee blossom and cherry settings [14]. The second period corresponds
to 18 dekads, from January to June (dekads 1 to 18). This period was considered because
a longer period may be more representative of the global coffee development conditions
and consequently result in variables that have a higher explanatory power. Additionally,
because the objective of the methodology developed in this research is to produce models
that enable forecasting of coffee yield well in advance compared to the harvest period
of October to December, we decided to set the coffee yield forecast as the end of June at
the latest. Using the first six months of the year to predict coffee yield will give planners
sufficient time to consider or find solutions before the end of the coffee season.

2.2.2. Processing of Satellite Images in SPIRITS Software

The NDVI, LAI, and FAPAR satellite image time series were processed in the free Soft-
ware for Processing and Interpreting of Remote Sensing Image Time Series (SPIRITS) [44]
(Figure 2).

First, images were imported and temporally smoothed with the SWETS algorithm [45],
which was set with a maximum of 75% of missing values in each pixel profile, and the
lowest physical value, Ymin, for cloud-free land pixels was kept at the default.

Second, the 11 phenological variables presented in Table 2 were computed from each
of the 3 biophysical products (NDVI, LAI, and FAPAR), considering 2 periods (dekads 5 to
15 and dekads 1 to 18) by using the “time statistics” function of SPIRITS, which resulted in
phenological images (Figure 2).

Third, zonal statistics were extracted for these phenological variable images for the
perennial agricultural vegetation zone of Dak Lak province thanks to an extraction mask
derived from the official 2015 land use map of Dak Lak province collected by the Depart-
ment of Agriculture and Rural Development of Dak Lak province (Figure 1). This land
use map did not contain a class specific to coffee plants but only a broad class relative to
agricultural perennial plants accounting for approximately 62.5 to 68.2% of coffee from
2015 to 2018 [40,46–48]. No pure coffee crop mask was available, and it was not possible

https://land.copernicus.eu/global/products/ndvi
https://land.copernicus.eu/global/products/lai
https://land.copernicus.eu/global/products/FAPAR
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for the authors to produce such a mask within the framework if this study. The extracted
statistics corresponded to the final 33 coffee yield predictors.

Table 2. The 11 phenological variables derived from FAPAR, LAI, and NDVI time series (extracted
using the time statistics function of SPIRITS [44] for 2 periods: dekads 5 to 15 and dekads 1 to 18,
from 2000 to 2020).

No. Variable Definition Dekads

1 vav Average value (or mean) 5–15; 1–18
2 vmn Minimum value 5–15; 1–18
3 vmx Maximum value 5–15; 1–18
4 aup Largest increase between subsequent periods 5–15; 1–18
5 adn Largest decrease between subsequent periods 5–15; 1–18
6 rsd Relative standard deviation (with N as denominator, not N − 1) 5–15; 1–18
7 rrg Relative range (maximum–minimum) 5–15; 1–18
8 dmn Relative date of (first) minimum value 5–15; 1–18
9 dmx Relative date of (last) maximum value 5–15; 1–18

10 dup Relative date of (first) largest increase 5–15; 1–18
11 ddn Relative date of (last) largest decrease 5–15; 1–18

2.3. Official Coffee Yield Datasets

The coffee yields considered in this study were provincial coffee yields and were com-
puted by dividing the official provincial coffee production by the official provincial coffee
area according to the Dak Lak Statistical Yearbook (2009, 2014, 2018, and 2020) [40,46–48].
The period from 2000 to 2020 was considered. These coffee yields correspond to coffee dry
grain yield.

2.4. Crop Yield Forecasting Model in the CST Software

In this study, the free software “Crop Growth Monitoring System Statistical Tool”
(CgmsStatTool—CGMS statistical tool—CST) [28] was used to generate the coffee yield
forecasting models.

The CST approach that we used in this study was multivariate regression analysis in
order to assess the linear relationship between coffee yield (Y) and one or more independent
variable(s) (the predictor(s) X1, X2 . . . ) with the following Equation (1):

Y = β0 + β1X1 + β2X2 + . . . + βnXn + ε (1)

In Equation (1), ε is the random error assumed to follow a normal distribution of
mean 0 and constant variance σ2. Errors for different years are assumed to be independent.
In the annotation for the X variables, the subscript n represents which X variable it is.
β0 . . . βn are the regression coefficients to be calculated through the ordinary least square
method, minimizing the difference between the observed and fitted yield values. The
CST tests various models, potentially using the crop yield time trend and between 1
and 4 independent variables; then, standard statistics and plots are exported to enable
assessment of the quality of these models.

CST analysis was carried out as follows: (1) check for possible errors in the database
of official yields and indicators, (2) assess both linear and quadratic crop yield time trends
at a significance level of 0.025, (3) assess the correlation between the indicators with and
without time trend (if any), and (4) search for the best multivariate regression models.

“CST takes the potential time trend into account by adding a term in the model
that corresponds to that time trend, if applicable. To increase numerical precision,
the regression coefficient for the linear time trend is for “year-offset” rather than
“year” itself. The offset is fixed at 1965 by default in CST. Likewise, the regression
coefficient for the quadratic time trend is for (year-offset)2.” [28]
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The period of 2000–2019 was used to search for and build the best models through the
multivariate regression method of the CST.

As the CST can only work with a database containing a maximum of 30 variables,
3 databases of 30 variables were built from the 33 input variables and were used sequentially.
With 20 years of calibration data (2000–2019), the CST allows 16 variables to be tested at
a time in the regression analysis. Therefore, we iterated a random selection of 16 input
variables to find the best models (Figure 2).

The automatic selection and ordering of the best models by CST at each CST iteration
for a given set of candidate variables was based on the root mean square error of prediction
(RMSEp) (Equation (2)). RMSEp indicates the model’s quality under prediction condi-
tions [23]. RMSEp calculated by the CST is based on the leave-one-out residual or PRESS
residual [28]. Predictions become increasingly precise as RMSEp approaches 0 and R2

approaches 1. With each CST iteration, the 3 to 4 best sub-models were manually selected
based on the RMSEp and the adjusted coefficient of determination (Adj.R2) (Equation (3)).
Adj.R2 is a statistical measure of the model’s goodness of fit in a regression model, which
shows the proportion of variation explained by the estimated regression line.

RMSEp =

√
1
n

n

∑
i=1

(Pi–Oi)
2∗ (2)

where:
Pi and Oi are the predicted and observed values for year i, respectively;
O and P express the means of observed and predicted values, respectively;

n is the number of samples (years); and
k is the number of independent variables in the regression equation.
* Note: in Equation (2), Pi − Oi is the difference between the ith observation and the

predicted value for the ith observation based on a model fit to the remaining observations,
i.e., without the ith observations (adapted from [28]).

Adj.R2= 1−
(

1− R2
)[ n− 1

n−(k + 1)

]
(3)

Four other statistical parameters (Equations (4)–(7)) were also used to appreciate the
models’ performance but not to select them.

R squared (R2) corresponds to the percentage of variance explained by the model
(Equation (4)) [23].

R2 =


n
∑

i=1

(
Oi– O

)(
Pi– P

)
√

n
∑

i=1

(
Oi– O

)2
√

n
∑

i=1

(
Pi– P

)2


2

(4)

The relative root mean square error (RRMSE) is calculated by dividing RMSEp by the
mean value of observed data (Equation (5)).

RRMSE(%) =
RMSEp

O
× 100 (5)

The mean absolute percentage error (MAPE) is expressed as follows (Equation (6)).

MAPE =

(
1
n

) n

∑
i=1

(
|Oi–Pi|
|Oi|

)
× 100 (6)
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The residual standard deviation (RSD) is the square root of the residual mean square [28]
(Equation (7)).

RSD =

√√√√√ n
∑

i=1
(Pi–Oi)

2

df
(7)

where df is degrees of freedom. Here, df is equal to the sample size minus the number of
parameters in the model. For example: Y = β0 + β1X1 + β2X2 + ε; therefore, df = n − 3,
where n is the sample size, and the number of parameters is 3.

The year 2020 was used to assess the performance of selected models with an indepen-
dent year not used in model calibration by comparing the observed and predicted yield for
2020 and computing the related residuals.

The final selection of the best models was based on a combination of model perfor-
mance in calibration (2000–2019) and in prediction for 2020.

3. Results
3.1. Model Performance

According to the CST time trend analysis mode, Dak Lak province showed a significant
upward linear time trend (p-value of 0.0012) for coffee yields during the period from 2000
to 2019 (Figure 3).
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Figure 3. Time trend for official coffee yield of Dak Lak province for the period from 2000 to 2019.

Details of the eight best coffee yield models for Dak Lak province obtained with the
multivariate regression method of the CST for the two periods considered (mid-February
to end of May and early January to end of June) are presented in Table 3 and Figure 4.

Overall, the forecast coffee yield models performed satisfactorily in both time periods,
with the RMSEp varying between 0.155 and 0.178 ton/ha, the RRMSE varying between
7.5% and 8.6%, and the Adjusted-R2 varying between 62.8% and 68.8% (Table 3 and
Figure 4). The models built on the 18-dekad period provided systematically better results
than those built on the 11-dekad period when considering RMSEp and RRMSE only. For
models computed based on 18 dekads, the RMSEp ranged from 0.155 to 0.158 ton/ha, the
Adj.R2 was between 64.2 and 68.8%, and the RRMSE ranged from 7.5 to 7.6%. For models
calculated based on 11 dekads, the RMSEp ranged from 0.174 to 0.178 ton/ha, the Adj.R2

was between 62.8 and 67.6%, and the RRMSE ranged from 8.4 to 8.6%.
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Table 3. Details of the eight best coffee yield models for Dak Lak province based on phenological
variables derived from NDVI, FAPAR, and LAI for the 2000–2019 time period, with their related
statistical perfomrances. Models 1 to 4 are based on dekads 1 to 18 (January to June), and models
5 to 8 are based on dekads 5 to 15 (mid-March to end of May). Model 0 corresponds to the model
achieved with the coffee yield linear time trend only.

Parameter Estimate s.e. t Value
RMSEp RRMSE R2 Adj.R2 MAPE RSD
(ton/ha) (%) (%) (%) (%) (ton/ha)

Model 0
No dekad

Constant 0.774 0.342 2.26
0.202 9.7 41.8 4.3 0.197Time trend

(linear) 0.029 7.63 × 10−3 3.83 44.8

Model 1
Dekads 1–18

Constant 0.496 0.361 1.37

0.155 7.5 64.2 4.3 0.154
Time trend

(linear) 0.018 7.30 × 10−3 2.46

dmx-LAI −0.013 3.84 × 10−3 −3.48 71.7
rrg-LAI 0.048 0.016 2.91

vmn-LAI 0.727 0.231 3.14

Model 2
Dekads 1–18

Constant 0.494 0.362 1.37

0.155 7.5 64.5 4.3 0.154
Time trend

(linear) 0.018 7.30 × 10−3 2.47

dmx-LAI −0.013 3.85 × 10−3 −3.47 71.7
vmn-LAI 0.155 0.186 0.83
vmx-LAI 0.572 0.197 2.91

Model 3
Dekads 1–18

Constant 0.415 0.346 1.2

0.155 7.5 64.9 3.9 0.153
Time trend

(linear) 0.019 7.39 × 10−3 2.56

dmx-LAI −8.74 × 10−3 4.27 × 10−3 −2.05 72.3
dmx-NDVI −3.58 × 10−3 3.53 × 10−3 −1.01
vmx-LAI 0.567 0.194 2.93

Model 4
Dekads 1–18

Constant 1.708 0.592 2.88

0.158 7.6 68.8 4.7 0.144
Time trend linear 0.013 6.79 × 10−3 1.92

ddn-LAI 0.011 3.00 × 10−3 3.65 75.4
rsd-FAPAR −0.119 0.046 −2.56
vmn-LAI 0.35 0.139 2.52

Model 5
Dekads 5–15

Constant −0.344 0.412 −0.84

0.174 8.4 62.8 4.7 0.157

Time trend
(linear) 0.015 7.86 × 10−3 1.85

adn-LAI 0.152 0.062 2.43 72.6
ddn-NDVI 9.96 × 10−3 4.54 × 10−3 2.19
dmn-LAI 0.019 6.24 × 10−3 2.97
vmx-LAI 0.382 0.144 2.66

Model 6
Dekads 5–15

Constant 3.218 0.972 3.31

0.177 8.5 67.6 5.6 0.147

Time trend
(linear) 0.025 6.10 × 10−3 4.13

adn-NDVI −9.122 2.602 −3.51 76.1
ddn-LAI −0.01 4.03 × 10−3 −2.55

ddn-NDVI 0.014 4.44 × 10−3 3.05
dmx-FAPAR −0.028 9.69 × 10−3 −2.9

Model 7
Dekads 5–15

Constant 1.917 0.738 2.6

0.178 8.6 63.6 5.0 0.156

Time trend
(linear) 0.015 9.21 × 10−3 1.67

adn-LAI 0.081 0.039 2.06 73.2
aup-FAPAR −1.74 0.673 −2.58
rrg-NDVI −0.067 0.043 −1.55
rsd-LAI 0.152 0.055 2.79

Model 8
Dekads 5–15

Constant 1.878 0.754 2.49

0.178 8.6 62.9 5.3 0.157

Time trend
(linear) 0.016 9.36 × 10−3 1.69

adn-LAI 0.081 0.04 2.04 72.7
aup-FAPAR −1.806 0.67 −2.7

rsd-LAI 0.165 0.063 2.6
rsd-NDVI −0.221 0.151 −1.46

s.e. = standard error, Adj.R2 = adjusted R squared, R2 = R squared, RSD = residual standard deviation,
RMSEp = root mean square error for prediction, RRMSE = relative root mean square error (%).

It seems difficult to clearly identify one best model among those of the 18-dekad period,
given that they all achieved very similar global statistical performance when considering
all statistical parameters. For example, for the18-dekad period, the best model according to
the Adj.R2 (model 4, Adj.R2 of 68.8%) is the worst according to the RMSEp (0.158 ton/ha).
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Figure 4. Adjusted R squared and RMSEp of the eight best coffee yield models based on phenological
variables derived from NDVI, FAPAR, and LAI for the 2000–2019 time period. Models 1 to 4 are based
on the dekads 1 to 18 (January to June), and models 5 to 8 are based on dekads 5 to 15 (mid-March to
end of May). Model 0 corresponds to the model achieved with the coffee yield linear time trend only.

The results show that model 0, which corresponded to the linear time trend only,
performed less efficiently (RMSEp = 0.202 ton/ha, RRMSE = 9.7%, Adj.R2 = 41.8%) than
models combining a linear time trend with phenological variables derived from the remote
sensing data (Table 3 and Figure 4).

For the period considering dekads 1–18 (from January to June), all selected models
used three variables, in addition to the time trend. Models 1 and 2 used only the LAI
variables, model 3 combined the LAI and NDVI variables, and model 4 combined the
LAI and FAPAR variables. For the period considering dekads 5–15, all models used four
explanatory variables, in addition to the time trend. Model 5 combined the LAI and NDVI
variables, whereas models 6–8 combined the LAI, NDVI, and FAPAR variables. Among
the 8 best models, LAI-derived variables occur 18 times, whereas NDVI-derived variables
occur 6 times and FAPAR-derived variables occur only 4 times. This observation suggests
that LAI-derived variables are more efficient than NDVI- and FAPAR- derived variables for
coffee yield forecasting. A relatively high negative or positive correlation was observed
between some variables selected in some of the best models (R varies in the range from
−0.863 (for Adn_LAI and Dmn_LAI in model 5) to 0.795 (for Vmn_LAI and Dmx_LAI
in model 1)) Figure 5). When considering the period of dekad 1 (start of January) to
dekad 18 (end of June) of the years 2000 to 2019, the analysis of the Pearson correlation
coefficient of the 11 phenological variables between the three biophysical satellite products,
LAI, NDVI, and FAPAR (Figure 6), shows a highly variable level of correlation between
these phenological variables, from, in absolute values, 0.00 to 0.97, i.e., from no correlation
to a very high level of correlation. For this period, the phenological variables derived
from FAPAR and NDVI are the most correlated (average absolute correlation of 0.59; third
column of Figure 6), whereas those derived from LAI are less correlated to NDVI and
FAPAR variables, especially for FAPAR (average absolute correlation of 0.30; first column
of Figure 6). The low correlation values observed for at least some phenological variables
in each pair of biophysical products (LAI and FAPAR, LAI and NDVI, and FAPAR and
NDVI) suggest that these three products may provide some non-redundant (uncorrelated)
information and thus be complementary at some point and, consequently, that it is relevant
to consider the three of them in the search for the best coffee yield prediction models. The
results also showed that models utilizing satellite data from January to June (models 1 to 4)
were more suitable for estimating coffee yields in Dak Lak province than models using
satellite data from mid-February to May (lower RMSEp and higher Adj-R2 for models 1
to 4).
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Figure 5. Correlation between the phenological variables derived from NDVI, FAPAR, and LAI for
the 2000–2019 time period and selected in the eight best coffee yield models. Models 1 to 4 are based
on dekads 1 to 18 (January to June), and models 5 to 8 are based on dekads 5 to 15 (mid-March to
end of May). The values in the upper-right parts of the plots (above the diagonal) are the Pearson
correlation coefficients between the two variables intersecting the corresponding row and column.
On the diagonal is the histogram of each variable, which shows the lowest locally fit regression line.
The plots below the diagonal are the bivariate scatter plots of each pair of variables. These scatter
plots show an ellipse around the mean (the red point), with the axis length reflecting one standard
deviation of the column and row variables. The red line is the smoothed regression lines of the
bivariate scatter plots of each pair of variables.
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Figure 6. Pearson correlation coefficient of the 11 phenological variables computed over the period
of dekad 1 (start of January) to dekad 18 (end of June) of the years 2000 to 2019 between the three
biophysical satellite products LAI, NDVI, and FAPAR.

3.2. Coffee Yield Predictions for 2020

Table 4 shows the residuals and percentage residuals of predicted coffee yields for the
target year 2020 for the eight selected models. For models based on dekads 1 to 18 (models
1 to 4), the absolute residuals were in the range of 0.054 to 0.134 ton/ha, and the absolute
percentage residuals were in the range of 2.2 to 5.5%. For models based on dekads 5 to
15, three models presented absolute residuals in the range of 0.248 to 0.571 ton/ha and
absolute percentage residuals in the range of 10.2 to 23.6%, and one model (model 5) with a
better performance presented a residual of 0.082 ton/ha and a percentage residual of 3.4%.
The best model in terms of prediction for 2020 was model 3, with a residual of 0.054 ton/ha
and a percentage residual of 2.2%. The 2020 residuals for models 1–4 (Table 4) were all
smaller than the corresponding RMSEp of the period 2000–2019 (Table 3), whereas the 2020
residuals for models 5–8 (Table 4) were generally much higher than the corresponding
RMSEp of the period 2000–2019 (Table 3).

Table 4. Coffee yield predictions for 2020 based on each model.

Predicted Yield (ton/ha) Official Yield (ton/ha) Residual (ton/ha) Percentage Residual (%)

Model 1 2.558 2.424 0.134 5.5
Model 2 2.558 2.424 0.134 5.5
Model 3 2.478 2.424 0.054 2.2
Model 4 2.298 2.424 −0.126 −5.2
Model 5 2.506 2.424 0.082 3.4
Model 6 2.995 2.424 0.571 23.6
Model 7 2.176 2.424 −0.248 −10.2
Model 8 2.171 2.424 −0.253 −10.4

Observed versus model-predicted coffee yields for the period 2000–2020 are presented
in a series of scatterplots in Figure 7. The predicted values used in these plots are those
predicted with the models calibrated for the 2000–2019 period.

These plots revealed the highest R2 (0.76) for model 4, combining ddn-LAI, rsd-FAPAR,
vmn-LAI, and yield linear time trend as predictor variables (Figure 7). For models based
on data from January to June, the four selected models (model 1 to 4) indicated an R2 in the
range of 0.73 to 0.76 and a p-value of <0.0001 (Figure 7).
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Figure 7. Scatter plot of observed versus model-predicted coffee yields for the years 2000 to 2020
using the eight best selected models based on satellite data for the period from dekads 1 to 18 (models
1 to 4) and for the period from dekads 5 to 15 (models 5 to 8). For model 6, the predicted value for
the year 2020 is 3.0 ton/ha, which is outside the plot frame. R-squared and p-values reported in this
figure are those of the relation between observed versus predicted yield for the full 2000–2020 period.

The models based on data from mid-February to May presented an R2 ranging from
0.66 to 0.75 and a p-value of <0.0001 (Figure 7).
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In 2006, most models underestimated the official yields by approximately 0.249 to
0.470 ton/ha.

4. Discussion

The observed positive coffee yield time trend in Dak Lak province over the past
20 years can be explained by a combination of factors, including investments in irrigation
infrastructure, a heavy reliance on irrigation on coffee farms, the affordability of fertilizer,
and the increasing adoption of new management techniques in the province [3,42].

Existing coffee models usually simulate and forecast coffee yields at a local or regional
level by including, as parameters, the main growth and development processes impacted
by climate variations. However, in this study, the results showed that it is possible to
predict coffee yield at a regional scale in Dak Lak province of Vietnam six months before the
harvest based on remote sensing data only. Thus, such models could be an essential tool for
indirectly assessing the impacts of weather variability or improvements in farmer practices
on coffee yields at the provincial or district level in Vietnam or any other coffee-growing
regions or countries under climate change conditions.

Figures 3 and 5 show that 2006 presented with the highest observed coffee yield, which
also corresponded to the year with the lowest model accuracy. We have no information
that could explain such a high yield in 2006. In particular, the precipitation in 2006 was not
particularly high.

Compared to the coffee yield forecast models developed by Kouadio et al. (2018) [21]
and Kouadio et al. (2021) [3], most of the models developed in this study achieved a higher
accuracy (RMSEp = 0.155 to 0.178 ton/ha, RMSE = 0.123 to 0.134 ton/ha, RRMSE = 7.5
to 8.6%, and MAPE = 3.9 to 5.3%) (Table 3). The model of Kouadio et al. (2018), which
consisted of an extreme learning machine (ELM) model using soil organic matter (SOM),
available potassium, and available sulfur as explanatory variables, provided coffee yield
estimates for Lam Dong province (in the central highlands of Vietnam) with an RMSE of
0.496 ton/ha, an RRMSE of 13.6%, and MAPE = 7.9% [21]. In addition, the simple process-
based model developed by Kouadio et al. (2021) for simulating and forecasting robusta
coffee yield at the regional scale in Vietnam showed a RMSE of 0.24 to 0.33 ton/ha and an
MAPE = 9 to 14%, and that model was successfully tested using satellite remote sensing
data (LAI) and model-based gridded climate data (maximum and minimum temperatures,
solar radiation, and rainfall): MAPE ≤ 12% and RMSE ≤ 0.29 ton/ha [3].

The method proposed in this study enabled the development of models that can
satisfactorily forecast coffee yield with a low RMSEp and a high Adj.R2 for Dak Lak
province. We also showed that the period considered for the production of the model
explanatory variables (dekads 1 to 18 versus dekads 5 to 15) has an important impact on
the accuracy of the resulting models, with better accuracy for those considering a more
extended period. The models based on a longer period were also composed of fewer
explanatory variables (three variables + the time trend) than those based on a shorter
period (four variables + the time trend).

When selected in models, the variables aup-FAPAR, dmx-LAI, dmx-FAPAR, and dmx-
NDVI presented systematically negative values, which may mean that the smaller the
“largest increase between subsequent periods” of the FAPAR and the sooner the “date
of maximum” LAI, FAPAR, and NDVI, the higher the coffee yield will be. Furthermore,
the variables derived from the LAI product were demonstrated to be more efficient for
coffee yield forecast models than those derived from NDVI and FAPAR, although some
complementarity was observed between these products for some models (Table 3).

This is the first research to date combining NDVI, FAPAR, and LAI remote-sensing-
derived phenological variables in the CST to create a coffee yield prediction model, which
is the main contribution of this study. The data used in this study were derived from
the SPOT-VEGETATION and PROBA-V instruments at a 1 km global spatial resolution.
Therefore, future studies should consider using more recent and similar products derived
at a 300 m spatial resolution.
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The main technical limitations we encountered in this research are related to the fact
that the CST cannot handle a database containing more than 30 variables and that with
20 years of data used for model calibration, the CST cannot consider more than 16 variables
at a time during the multiple linear regression model search. These two technical limitations
of the CST make its use more difficult than it should be.

In this research, we used a multiple linear regression technique in order to produce
coffee yield prediction models. Such a technique is particularly suited to identify and
use the linear relationships between the predictors and the dependent variable. However,
the linearity of the relationship between coffee yield and the phenological variables was
not assessed in this study, and it may be possible that some variables present a nonlinear
relationship with yield. Consequently, further research should involve testing other non-
linear modelling approaches for predicting coffee yield from biophysical variables, such
those used in this study.

The findings of this study show that satellite data, such as the NDVI, LAI, and FAPAR
products provided by the Copernicus Global Land Service are a good source of information
for estimating and forecasting coffee yield in a challenging situation, where there is a
deficit of information about management practices, soil characteristics, irrigation schedule,
phenology of coffee trees, etc.

We think that a main source of improvement of the coffee yield forecast model devel-
oped in this research would probably be the use of a more detailed land use map containing
a class specific to coffee. The official 2015 land use map of Dak Lak province used to
extract satellite-derived vegetation biophysical variables did not contain a class specific to
coffee plants but only a broad class relative to agricultural perennial plants, accounting for
approximately 62.5 to 68.2% of coffee from 2015 to 2018 [40,46–48].

5. Conclusions

The present study is the first research on the development and assessment of a coffee
yield forecasting method at the regional scale for Dak Lak province in the central highlands
of Vietnam using the Crop Growth Monitoring System Statistical Tool (CGMSstatTool—
CST) software and vegetation biophysical variables (NDVI, LAI, and FAPAR) derived from
satellite remote sensing data (SPOT-VEGETATION and PROBA-V).

The findings of this research reveal that the elaboration of multiple linear regression
models based on satellite-derived vegetation biophysical variables (LAI, NDVI, and FAPAR)
corresponding to the first six months of the years 2000–2019 resulted in coffee yield forecast
models presenting satisfactory accuracy (Adj.R2 = 64 to 69%, RMSEp = 0.155 to 0.158 ton/ha,
and MAPE = 3.9 to 4.7%). These results demonstrate that the CST may efficiently predict
coffee yields on a regional scale by using only satellite-derived vegetation biophysical
variables. Our findings are likely to aid local governments and decision makers in precisely
forecasting coffee production early and promptly, as well as in recommending relevant
local agricultural policies.

Further research should consider applying the developed method to search for coffee
yield forecast models at other scales (at district and national levels) with enhanced input
data (finer spatial resolution for satellite images and more accurate coffee maps) and with
other explanatory variables.
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