Unpublished conference/Abstract (Scientific congresses and symposiums)
Application of BEL1D for sNMR data interpretation
Michel, Hadrien; Hermans, Thomas; Kremer, Thomas et al.
20218th International Workshop on Magnetic Resonance
 

Files


Full Text
MRS2021_Michel_et_al.pdf
Publisher postprint (563.53 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Inversion; Machine Learning; MCMc; Uncertainty; BEL
Abstract :
[en] The interpretation of sNMR data is still mainly performed using deterministic or stochastic inversion schemes. sNMR signal to noise ratio is often low regarding electromagnetic noise pollution which coupled to nonuniqueness makes uncertainty quantification challenging. Here, we propose a new Bayesian scheme relying on a learning step and a prediction step to perform the interpretation of sNMR data including uncertainty quantification: BEL1D. With it, it is possible to estimate the uncertainty of models parameters from a given dataset in a rapid manner compared to stochastic inversion and reach an equivalent posterior estimation after iterative prior resampling. The learning step can even be used to multiple datasets to improve performances with only the prediction required. Additionally, BEL1D could be used with any geophysical methods.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Michel, Hadrien  ;  Université de Liège - ULiège > Urban and Environmental Engineering  ; UGent - Ghent University ; F.R.S.-FNRS - Fonds de la Recherche Scientifique
Hermans, Thomas;  UGent - Ghent University
Kremer, Thomas ;  Université de Liège - ULiège > Urban and Environmental Engineering  ; UNantes
Nguyen, Frédéric ;  Université de Liège - ULiège > Urban and Environmental Engineering
Language :
English
Title :
Application of BEL1D for sNMR data interpretation
Publication date :
October 2021
Event name :
8th International Workshop on Magnetic Resonance
Event place :
Strasbourg, France
Event date :
du 26 octobre 2021 au 28 octobre 2021
Audience :
International
Available on ORBi :
since 16 May 2022

Statistics


Number of views
64 (2 by ULiège)
Number of downloads
31 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi